• 제목/요약/키워드: Total shear stress

검색결과 219건 처리시간 0.028초

시판된장의 리올로지(Rheology) 특성에 관한 연구 (Flow Properties of Doenjang)

  • 양신철;김선화
    • 한국관광식음료학회지:관광식음료경영연구
    • /
    • 제13권1호
    • /
    • pp.55-68
    • /
    • 2002
  • Flow properties of doenjang samples at various total solid contents (30, 32, 34, 36, 38, 40%) were evaluated in this study. Flow properties of doenjang samples was determined by using Haake concentric cylinderical viscometer and Instron testing machine with capillary extrusion viscometer, and consistency index(K), and flow behavior index(n) was also determined from power models, and yield stress was derived form Casson models and vanes methods. Doenjang samples showed shear-thinning (pseudoplastic) fluid with small magnitude of flow behavior index(n) (n=0.30-0.55). Casson yield stress was from 2.11 to 64.02(Pa). Vane yield stress was more effective than casson yield stress in property of reactivation. Apparent viscosity was decreased with the increase in temperature and activation energy was in the range of 6.58 to 10.70 kJ/mole. From the capillary extrusion method, K and n was increased with the increase in solid content with good correlation with. The result revealed that capillary extrusion method is useful for measuring the flow properties of doenjang.

  • PDF

탄성받침의 극한전단성능 (A Ultimate Shear Performance of Elastomeric Bearings)

  • 윤혜진;곽임종;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.117-120
    • /
    • 2008
  • 교량받침은 활하중, 크리프, 온도변화, 건조수축 등에 의한 상부구조의 변위를 흡수하는 역할을 수행한다. 국내 탄성받침 설계기준인 KS F 4420은 전단변형을 탄성받침 총 고무 높이의 70% 이내로 제한하고 있는데, KS F 4420에 의해 설계된 탄성받침이 요구되는 전단성능을 발휘하기 위해서는 허용 전단변형률이 전단파괴에 대하여 충분한 안전성을 보유해야 한다. 더욱이 탄성받침이 지진격리장치와 함께 내진설계에 사용될 수 있는 상황을 고려할 경우, 탄성받침은 KS F 4420의 허용전단변형률보다 높은 수준의 전단성능을 확보해야 한다. 이 논문에서는 국내 탄성받침의 전단성능을 확인하기 위하여 극한전단실험을 실시하였다. 실험 결과 탄성받침은 200% 이상의 전단변형률에서 파괴가 발생하여 KSF 4420의 허용전단변형률 규정이 안전 측이라는 사실을 알 수 있었다. 하지만 일체화된 거동을 할 것이라 기대 되었던 탄성받침이 200% 전단변형률 내외에서 받침 분리현상을 보였다. 관측된 받침분리 현상은 탄성받침의 내진설계 적용성을 고려할 경우 교량 시스템에 예기치 못한 충격 또는 집중 응력을 발생 시킬 수 있기 때문에 이러한 현상이 방지될 수 있도록 관련 규정이 필요하다고 판단된다.

  • PDF

Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.29-38
    • /
    • 2010
  • This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.

유체에 의해 유발된 전단력이 치은 섬유아세포 유전자 발현 변화에 미치는 영향에 관한 연구 (GENE EXPRESSION AFTER THE APPLICATION OF THE FLUID-INDUCED SHEAR STRESS ON THE GINGIVAL FIBROBLAST)

  • 정미향;최제용;채창훈;김성곤;남동석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권5호
    • /
    • pp.424-430
    • /
    • 2005
  • The oral cavity is humid environment mainly due to the continuous salivary flow. The reaction of oral mucosa to fluid flow is important for homeostasis and pathogenesis. The objective of this study is the screening the change of gene expression after the application of fluid induced shear stress (FISS) on the gingival fibroblast using cDNA microarray assay. The immortalized human gingival fibroblasts were grown and FISS was applied using a cone viscometer at a rotational velocity of 40 rpm, respectively for periods of 2 and 4 hours. The synthesis of cDNA was done from the extracted total RNA and cDNA microarray assay was done subsequently. The genes that showed over 1.6 in the Cy3/Cy5 or the Cy5/Cy3 value were regarded as genes influenced significantly by the FISS application ion (/M/>0.7). The " RUNX-1" was increased its expression in 2 hours group and " RUN and SH3 domain containing 1" was increased its expression in 4 hours group. The "CC020415", "cyclin L1", "interferon regulatory factor1", "early growth response 1", "immediate early response 2", and "immediate early response 3" genes were increased their expression in 2 and 4 hours after FISS application. In conclusion, we could find many genes that were probably related to the FISS application. Interestingly, most of them were placed in similar molecular pathways and these findings improve the reliability of chip data and usefulness in overall screening. From this experiment, we could find many items for further study and it will make improvement in the understanding of intracellular events in response to FISS.

준 폐만 점착성 퇴적물의 퇴적매개변수 산정에 관한 실험적 연구 (An Experimental Study on Depositional Parameters of Cohesive Sediments in Semi-closed Bay)

  • 정의택;김용묵;김동호;황규남
    • 한국해안·해양공학회논문집
    • /
    • 제24권3호
    • /
    • pp.159-165
    • /
    • 2012
  • 본 연구에서는 환형수조를 이용한 일련의 퇴적실험을 수행하여, 국내 최초로 자연 점착성 퇴적물 시료에 대한 퇴적 매개변수가 정량적으로 산정되었다. 퇴적실험을 위해 광양만이 대표 해역으로 선정되어 시료가 채취되었으며, 퇴적실험은 초기농도가 동일한 조건에서 바닥전단응력의 크기만을 변화시키면서 총 18회의 실험이 수행되었다. 퇴적실험결과, 광양만 갯벌 점착성 퇴적물의 최소전단응력 ${\tau}_{bmin}$과 퇴적률 매개변수들 ${\sigma}_1$, $({\tau}_b^*-1)_{50}$은 각각 $0.11N/m^2$, 0.68, 0.85로 산정되었으며, 과거 타 연구결과와의 비교검토를 통하여 본 실험에서 도출된 결과의 타당성이 입증되었다.

마산항 점착성 퇴적물의 퇴적특성에 대한 실험적 연구 (An Experimental Study on Depositional Properties of Cohesive Sediments in Masan Port)

  • 양수현;김남훈;황규남
    • 한국해안·해양공학회논문집
    • /
    • 제27권6호
    • /
    • pp.434-442
    • /
    • 2015
  • 본 연구에서는 자연시료에 대한 퇴적 매개변수를 정량적으로 산정하기 위하여, 환형수조를 이용한 퇴적실험이 수행되었다. 퇴적실험을 위해 마산항이 대표 해역으로 선정되어 시료가 채취되었으며, 퇴적실험은 초기농도가 동일한 조건에서 바닥전단응력의 크기만을 변화시키면서 총 18회의 실험이 수행되었다. 퇴적실험 결과, 마산항 갯벌 점착성 퇴적물의 최소전단응력 ${\tau}_{bmin}$과 퇴적률 매개변수 ${\sigma}1$$({\tau}_b^*-1)_{50}$은 각각 $0.10N/m^2$, 0.54, 0.87로 산정되었으며, 과거 타 연구결과와의 비교 검토를 통하여 본 실험에서 도출된 결과의 타당성이 입증되었다.

변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측 (Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model)

  • 김상우;이정윤
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.813-822
    • /
    • 2004
  • 축하중을 받는 철근콘크리트 부재의 전단강도를 예측하기 위하여, 본 연구에서는 전단력과 축하중 및 휨모멘트를 받는 철근 콘크리트 부재의 전단거동을 예측할 수 있는 변환각 트러스 모델(TATM)을 제안하였다. TATM에서, 축력의 영향을 고려하기 위하여 축압축력이 증가할수록 고정각은 감소하며 균열 방향의 콘크리트 전단저항은 증가한다. TATM의 예측결과가 축력을 받는 철근콘크리트 부재에 대하여 정확성과 신뢰성을 가지는지 검증하기 위하여, 축력을 받는 총 67개의 전단실험 결과를 수집하였으며, TATM 및 기존의 트러스 모델(MCFT, RA-STM FA-STM)과 비교하였다. 수집한 실험결과와 해석결과를 비교한 결과, TATM에 의한 해석결과는 실험결과를 평균 0.95, 변동계수 $12.0\%$로 기존의 트러스 모델보다 더 정확히 예측하였으며, 철근능력비, 축력, 전단경간비 및 압축철근비의 영향을 받지 않았다.

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • 유영민
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.

가공의치(架工義齒)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析) (Photoelastic Stress Analysis of Fixed Partial Dentures)

  • 조원행
    • 대한치과보철학회지
    • /
    • 제18권1호
    • /
    • pp.15-35
    • /
    • 1980
  • The purpose of this study was to investigate stresses in the various components of fixed partial dentures restoring the posterior teeth of the lower jaw, and to measure quantitatively the effects of certain modifications in structural design on the stresses in the restorations using two-dimensional photoelasticity. Two-dimensional photoelastic methods were used in this study. Several models of fixed partial dentures were constructed. Shoulder less margins and anatomic occlusal reduction were incorporated in Model 1. Rounded shoulders and flat occlusal reduction were incorporated in Model 2, while Model 3 was a cantilever fixed partial denture. Other similar fixed partial dentures were constructed with V and U notches deliverately included in the region of the fixed joints for comparative reasons. The birefringent materials used in this study were PSM-1 and PSM-5 in standard sheets. PSM-1 was used for constructing the substructure, and PSM-5 was used in making the components of the fixed partial dentures. The two materials were used in the construction of composite photoelastic models. Improved artificial stone was used to represent dental cement in luting the composite photoelastic models. Static loading procedures were used at preplanned sites to represent occlusal loads in the mouth. 35 mm color and B/W film were used to record isochromatics in accordance with photoelastic procedures. Data reduction was performed using the grid method, which helped in, the mathematical integration procedure (Shear difference method) to separate the principal stresses. The results were as follows. 1. Fixed partial dentures do not function in bending as a symmetrical beam. Alternate areas of tension and compression were demonstrated when multiple contact loading was used. 2. The weakest part in posterior fixed partial dentures is the fixed joint. 3. (1) Models I and modified Model I were loaded on the pontic using a 50 pound vertical static load. The shear stress near the posterior fixed joint in Model 1 (U notches) was+129.4 p.s.i., and at the same fixed joint in modified Model 1 (V notches) was+239.4 p.s.i. The concentration of stress in fixed joint was reduced by 50% when U notches replaced the V notches. (2) Modified Model 2 was loaded using a multiple contact loader at a total load of 125 pounds. The difference between the principal stresses (${\sigma}_1-{\sigma}_2$), shear stress, at the V notches was+600 p.s.i., and at the U notches was+3l7 p.s.i. The shear stress was reduced by 50% when U notches replaced the V notches. V-grooves at the fixed joints should be avoided, and should be replaced by regular shaped U-grooves. 4. Cantilever fixed partial dentures had much higher stresses at the fixed joint than fixed partial dentures that were attached at both ends.

  • PDF

3차원 파단 변형률 평면을 이용한 비보강 원판의 펀칭 파단 시뮬레이션 (Punching Fracture Simulations of Circular Unstiffened Steel Plates using Three-dimensional Fracture Surface)

  • 박성주;이강수;정준모
    • 한국해양공학회지
    • /
    • 제30권6호
    • /
    • pp.474-483
    • /
    • 2016
  • Accidental events such as collisions, groundings, and hydrocarbon explosions in marine structures can cause catastrophic damage. Thus, it is extremely important to predict the extent of such damage, which determines the total amount of oil spills and the residual hull girder strength. Punching fracture tests were conducted by Choung (2009b), where various sizes of indenters and circular unstiffened steel plates with different thicknesses were used to quasi-statically realize damage extents. A three-dimensional fracture strain surface was developed based on a reference (Choung et al., 2015b), where the average stress triaxiality and average normalized Lode angle were used as the parameters governing the fracture of ductile steels. In this study, new numerical analyses were performed using very fine axisymmetric elements in combination with an Abaqus user-subroutine to implement the three-dimensional fracture strain surface. Conventional numerical analyses were also conducted for the tests to identify the best fit fracture strain values by changing the fracture strains. Based on the phenomenon of the average normalized Lode angle starting out positive and then becoming slightly negative, it was inferred that the shear stress primarily dominates in determining the fractures locations, with a partial contribution from the compressive stress. It should be stated that the three-dimensional fracture surface effectively predicted at least the shear stress-dominant fracture behavior of a mild steel.