• Title/Summary/Keyword: Total radiation flux

Search Result 60, Processing Time 0.03 seconds

Analysis and Monitoring of Environmental Parameters in a Single-span Greenhouse during Strawberry Cultivation

  • Park, Minjung;Kang, Taegyeong;Yun, Sung-wook;Lim, Ryugap;Son, Jinkwan;Kang, Donghyeon
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.907-914
    • /
    • 2021
  • In this study, strawberry cultivation environment in a greenhouse located in Jeonju was monitored and internal environmental parameters were analyzed. Temperature, humidity, RAD, and PPF sensors were installed to monitor environmental conditions in the test greenhouse. Data were collected every 10 minutes during four winter months from sensors placed across the greenhouse to assess its permeability and environmental uniformity. Temperature and humidity inside the greenhouse were relatively uniform with negligible deviations among the center, south, and north; however, it was judged that further analysis of gradients of these parameters from the east to the west of the greenhouse would be needed. Both RAD (Total solar radiation) and PPF (Photosynthetic photon flux) had high values on the south and were low on the north and the reduction rate of these parameters was 54% and 61%, respectively, indicating that a significant amount of light could not be transmitted. This implied a significant decrease in the amount of light entering the greenhouse during winter. Therefore, it is concluded that environmental control devices and auxiliary lighting are needed to achieve uniform greenhouse environment for efficient strawberry cultivation.

Record-breaking High Temperature in July 2021 over East Sea and Possible Mechanism (2021년 7월 동해에서 발생한 극한 고온현상과 기작)

  • Lee, Kang-Jin;Kwon, MinHo;Kang, Hyoun-Woo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.17-25
    • /
    • 2022
  • As climate change due to global warming continues to be accelerated, various extreme events become more intense, more likely to occur and longer-lasting on a much larger scale. Recent studies show that global warming acts as the primary driver of extreme events and that heat-related extreme events should be attributed to anthropogenic global warming. Among them, both terrestrial and marine heat waves are great concerns for human beings as well as ecosystems. Taking place around the world, one of those events appeared over East Sea in July 2021 with record-breaking high temperature. Meanwhile, climate condition around East Sea was favorable for anomalous warming with less total cloud cover, more incoming solar radiation, and shorter period of Changma rainfall. According to the results of wave activity flux analysis, highly activated meridional mode of teleconnection that links western North Pacific to East Asia caused localized warming over East Sea to become stronger.

The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data (위성자료를 이용한 몽골의 일사량 분포 특성)

  • Jee, Joon-Bum;Jeon, Sang-Hee;Choi, Young-Jean;Lee, Seung-Woo;Park, Young-San;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2012
  • Mongolia's solar-meteorological resources map has been developed using satellite data and reanalysis data. Solar radiation was calculated using solar radiation model, in which the input data were satellite data from SRTM, TERA, AQUA, AURA and MTSAT-1R satellites and the reanalysis data from NCEP/NCAR. The calculated results are validated by the DSWRF (Downward Short-Wave Radiation Flux) from NCEP/NCAR reanalysis. Mongolia is composed of mountainous region in the western area and desert or semi-arid region in middle and southern parts of the country. South-central area comprises inside the continent with a clear day and less rainfall, and irradiation is higher than other regions on the same latitude. The western mountain region is reached a lot of solar energy due to high elevation but the area is covered with snow (high albedo) throughout the year. The snow cover is a cause of false detection from the cloud detection algorithm of satellite data. Eventually clearness index and solar radiation are underestimated. And southern region has high total precipitable water and aerosol optical depth, but high solar radiation reaches the surface as it is located on the relatively lower latitude. When calculated solar radiation is validated by DSWRF from NCEP/NCAR reanalysis, monthly mean solar radiation is 547.59 MJ which is approximately 2.89 MJ higher than DSWRF. The correlation coefficient between calculation and reanalysis data is 0.99 and the RMSE (Root Mean Square Error) is 6.17 MJ. It turned out to be highest correlation (r=0.94) in October, and lowest correlation (r=0.62) in March considering the error of cloud detection with melting and yellow sand.

The Assessment of Ultraviolet Radiation in Vegetable Growth (식물생장(植物生長)에 미치는 자외선(紫外線)의 효과(效果))

  • Kim, Hyeong-Ok;Moon, Doo-Khil;Lee, Shin-Chan;Kim, Yong-Ho;Song, Pill-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 1984
  • The terrestrial UV flux rapidly increased in late spring, as measured by the chemical actinometry at two elevations (near sea level and 1,100m above sea level) on Jeju Island. More intense UV fluxes were observed at higher altitudes. Any harmful effects of solar UV-B on the growth of soybean were not detected in UV-B-exclusion experiment. To ascertain the effect of UV radiation on vegetative growth, intact (㏖ wt 124000) and large (${\sim}120000$) phytochromes were irradiated with UV-B radiation. In intact phytochrome, the Pfr form accounts for 60% of the total phytochrome under stationary state conditions, whereas it accounts for 50% in large phytochrome. Calculated quantum yields for the forward and the backward phototransformations of phytochrome by UV were ${\phi}r=0.016$ and ${\phi}fr=0.010$ in intact phytochrome, and ${\phi}r={\phi}fr=0.012$ in large phytochrome, respectively.

  • PDF

Effect of Irrigation Water Depth on Greenhouse Gas Emission in Paddy Field (논물 담수심이 온난화 가스 배출에 미치는 영향)

  • Lee, Kyeong-Bo;Kim, Jong-Gu;Park, Chan-Won;Shin, Yong-Kwang;Lee, Deog-Bae;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.150-156
    • /
    • 2005
  • The increasing emission of greenhouse gases may change agricultural environment. The agronomic productivity will depend upon change of temperature, precipitation, solar radiation and fertilization. This study was conducted to investigate greenhouse gas emission with irrigation water depth in paddy field. Area of each experiment plot is $70m^2$, Three treatments with three replications were carried out in this experiment, which was laid out as randomized complete block design. The treatments of irrigation water were maximum field water capacity and 4 and 8 cm depth. The application rate of fresh rice straw was $8,000kg\;ha^{-1}$ in combination with chemical fertilizers ($110kg\;N\;ha^{-1}$, $45kg\;P_2O_5\;ha^{-1}$ and $57kg\;K_2O\;ha^{-1}$). The $CH_4$ emission was highest at 32 days after rice transplanting with rice straw treatment. The $CH_4$ emission in the plot of maximum field water capacity was lower compared with 4 and 8 cm of irrigation depth. $CH_4$ and $N_2O$ emission under different water depth in the paddy field were 30 and $1.52kg\;ha^{-1}$ at 8 cm depth, 281 and $1.71kg\;ha^{-1}$ at 4 cm depth, and 219 and $2.01kg\;ha^{-1}$ at water saturated condition. The total emission of greenhouse gases equivalent to $CO_2$ emission with rice straw application were $6,939kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $6,431kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $5,222kg\;CO_2\;ha^{-1}$ at water saturated condition. The GWPs without rice straw application were $4,449kg\;CO_2\;ha^{-1}$ at 8 cm depth plot, $3,702kg\;CO_2\;ha^{-1}$ at 4 cm depth plot and $4,579kg\;CO_2\;ha^{-1}$ at water saturated condition.

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor (희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측)

  • Yi, Jae-Bok;Jeong, Dae-Ro;Huh, Kang-Yul;Jin, Jae-Min;Park, Jung-Kyu;Lee, Min-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1257-1264
    • /
    • 2011
  • This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

A Study on the Inventory Estimation for the Activated Bioshield Concrete of KRR-2 (연구로 2호기 방사화 수조 콘크리트의 재고량 평가에 관한 연구)

  • Hong, Sang Bum;Seo, Bum Kyoung;Cho, Dong Keun;Jeong, Gyeong Hwan;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.202-207
    • /
    • 2012
  • The radioactivity inventory significantly affects all steps of decommissioning projects including planning, cost estimation, risk assessment, waste management and site remediation. The decommissioning project of the KRR-2 was completed in 2009 and a large amount of activated concrete waste was generated. The bioshield concrete, containing minute amount of impurity elements, was activated by neutron reaction during the operation of the reactor. A variety radionuclides was generated in the concrete, including $^3H$, $^{14}C$, $^{55}Fe$, $^{60}Co$ $^{63}Ni$, $^{134}Cs$, $^{152}Eu$ and $^{154}Eu$. In this paper, the comparison between the calculated results and previous measured results was carried out to estimate the inventory of the bioshield concrete of the KRR-2. The combined computer codes of MCNP5 and ORIGEN 2.1 for calculation of the distribution of neutron flux, cross-section and generation of radionuclides were used. The results were shown that 99.8% of the total radioactivity of $^3H$, $^{55}Fe$, $^{60}Co$ and $^{152}Eu$ in the bioshield concrete 12 years after shutdown. The effects on the variation of inventory were analysed depending on the operation periods and the cooling times in the bioshield concrete.

Study on Concrete Activation Reduction in a PET Cyclotron Vault

  • Bakhtiari, Mahdi;Oranj, Leila Mokhtari;Jung, Nam-Suk;Lee, Arim;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.130-141
    • /
    • 2020
  • Background: Concrete activation in cyclotron vaults is a major concern associated with their decommissioning because a considerable amount of activated concrete is generated by secondary neutrons during the operation of cyclotrons. Reducing the amount of activated concrete is important because of the high cost associated with radioactive waste management. This study aims to investigate the capability of the neutron absorbing materials to reduce concrete activation. Materials and Methods: The Particle and Heavy Ion Transport code System (PHITS) code was used to simulate a cyclotron target and room. The dimensions of the room were 457 cm (length), 470 cm (width), and 320 cm (height). Gd2O3, B4C, polyethylene (PE), and borated (5 wt% natB) PE with thicknesses of 5, 10, and 15 cm and their different combinations were selected as neutron absorbing materials. They were placed on the concrete walls to determine their effects on thermal neutrons. Thin B4C and Gd2O3 were placed between the concrete wall and additional PE shield separately to decrease the required thickness of the additional shield, and the thermal neutron flux at certain depths inside the concrete was calculated for each condition. Subsequently, the optimum combination was determined with respect to radioactive waste reduction, price, and availability, and the total reduced radioactive concrete waste was estimated. Results and Discussion: In the specific conditions considered in this study, the front wall with respect to the proton beam contained radioactive waste with a depth of up to 64 cm without any additional shield. A single layer of additional shield was inefficient because a thick shield was required. Two-layer combinations comprising 0.1- or 0.4-cm-thick B4C or Gd2O3 behind 10 cm-thick PE were studied to verify whether the appropriate thickness of the additional shield could be maintained. The number of transmitted thermal neutrons reduced to 30% in case of 0.1 cm-thick Gd2O3+10 cm-thick PE or 0.1 cm-thick B4C+10 cm-thick PE. Thus, the thickness of the radioactive waste in the front wall was reduced from 64 to 48 cm. Conclusion: Based on price and availability, the combination of the 10 cm-thick PE+0.1 cmthick B4C was reasonable and could effectively reduce the number of thermal neutrons. The amount of radioactive concrete waste was reduced by factor of two when considering whole concrete walls of the PET cyclotron vault.

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 2. Effect of Photo-oxidation and Adsorption (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 2. 광산화와 흡착의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.201-211
    • /
    • 2011
  • The effects of humic acid (HA), photo-oxidation and adsorption were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for drinking water treatment. UF, photocatalyst, and UV radiation processes were investigated in viewpoints of membrane fouling resistance $(R_f)$, permeate flux (J), and total penneate volume $(V_{\Upsilon})$ at 2 and 4 mg/L of HA respectively. As decreasing HA, $R_f$ decreased dramatically and J increased, and finally $V_{\Upsilon}$ was the highest at 2 mg/L HA. Average treatment efficiencies of turbidity decreased as increasing HA, but treatment efficiency of HA was the highest at 4 mg/L HA. It was because most of HA was removed by membrane and some HA passing through the membrane was adsorbed or photo-oxidized by photocatalyst at low HA, and therefore treated water quality was almost same at 2 and 4 mg/L HA, but feed water quality was higher at 4 mg/L. At effect experiment of photo-oxidation and adsorption, J of UF + $TiO_2$ + UV process was maintained at the highest, and ultimately $(V_{\Upsilon})$ after 180 minutes' operation was the highest. As results of comparing the treatment efficiencies of turbidity and HA, photocatalyst adsorption had more important role than photo-oxidation when HA increased from 2 to 4 mg/L.