• 제목/요약/키워드: Total pressure Loss

검색결과 332건 처리시간 0.069초

An Experimental Investigation of Side-Orifice Effects on Pressure Drop for Single-Phase Flow

  • Seo, Kyong-Won;Chun, Moon-Hyun;Nam, Ho-Yun;Park, Seok-Ki;Lee, Yong-Bum
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.295-300
    • /
    • 1996
  • To investigate the effects of the side-orifice on the pressure drop for single-phase flow, a series of experiments have been carried out with 16 different downstream test sections with various combinations of side-orifice shapes, different numbers of side-orifices, and different arrangements of the side-orifice using water as a working fluid. From the measurements of the pressure drop and the flow rate, the pressure loss coefficient of the side-orifice(s) has been evaluated. Based on the total number of 529 present data, an empirical correlation for the pressure loss coefficient has been developed in terms of Reynolds number and geometric parameters, such as area ratio, equivalent diameter, leading edge, and average width of side-orifice.

  • PDF

오픈 블라스팅 로봇에서 관로내의 그리트 가압이송 특성 (Pressurized Pneumatic Grit Conveying Characteristics in Pipeline for Open Blasting Robot)

  • 김원배;양석원;이상범;김수호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1185-1189
    • /
    • 2007
  • In this paper, to improve the efficiency of pressurized pneumatic grit conveying for ship block open blasting process. Pressurized pneumatic grit conveying is defined as the transportation of grit(abrasive) in a compressed air flow. Total Pressure loss in flexible hose for pneumatic conveying is sum of pressure losses due to gas and grit and needle type pressure transmitter for measured pressure loss. haracteristics of grit open blasting by pneumatic conveying were studied experimentally. Studies variables were blasting nozzle ID, length and ID of flexible hose, grit flow rate, flow rate and pressure of transport air. It was experimentally proved that optimal open blasting condition and cost effective operation regarding grit blasting, obtaining a high qulity surface preparation(Sa $2^{\frac{1}{2}}$).

  • PDF

실험실습용 국소배기 기초실험장치의 개발 (Development of Basic Local Exhaust Ventilation System for Experimental Education)

  • 한돈희;박민규
    • 한국환경보건학회지
    • /
    • 제31권5호
    • /
    • pp.372-378
    • /
    • 2005
  • To enhance educational effect for exhaust ventilation system, more instructive educational engineering such as experimental system should be needed. This study was performed to 1) manufacture the basic experimental system for local exhaust ventilation, 2) experiment with this system and 3) develop methodology of exhaust ventilation education. With this system, three pressures (static pressure(SP), velocity pressure(VP) and total pressure(TP)) were measured and illustrated and the graphic shapes agreed to theoretical ones relatively. Entry loss factor ($F_h$) of each hood was found to be different with hood shape, duct velocity and flow rate. This result implies that precise $F_h$ should be determined case by case and a industrial hygienist should not be dependent on the existing values. Pressure loss using velocity pressure method and characteristics of air movement near hoods using fume were grasped with this system. But larger system should be recommended to produce more precise experimental results.

의복형태에 따른 성인여성의 발한반응에 관한 연구 (The Study on the Sweating Responses of Adult Female according to Garment types)

  • 염희겅;최정화
    • 한국의류학회지
    • /
    • 제16권4호
    • /
    • pp.405-416
    • /
    • 1992
  • This study was performed to investigate correlation between total body weight loss and local sweat rate and to find out any possible method that can estimate total body weight loss judging from local sweat rate. Twelve adult females were kept at 44 $\pm1^{\circ}C$, 50 ${\pm}5\%$ R.H. (1) Physiological responses such as total body weight loss, local sweat rate, rectal temperature, skin temperature, blood pressure and pulse, (2) micro climate inside garment and (3) subjective sensation were examined. Two types of garment such as long-sleeves with long pants (Type I) and half·sleeves with short pants (Type II) were used to observe the effect of garment types on sweating response. Both clothing weight was equal (132$\pm$3 g/$m^{2}$). The results were as follows: 1. Regardless of the different types, total body weight loss was more interrelated with the sweat rate on forehead than any other parts of the body. Except the forehead, different parts of body with different types of garment influenced on body weight loss quite differently. 2. Total body weight loss was more interrelated with the weight gain of garment than the local sweat rate. 3. Under the environment of 44$\pm1^{\circ}C,\;50{\pm}5\%$R.H., body weight loss during 1 hour of subject clothed and silted was 275.2 g/hr and weight loss per body surface area was 178.9 g/$m^{2}/hr$ Garment types have no influences on total body weight loss. 4. Local sweat rate (mg/7.07 $cm^{2}/hr$) was 208.0,191.0, 133.0, 115.0,81 0, 75.1 and 66.3 on scruff, breast, forehead, forearm, thigh, upper arm, leg respectively No evidence has been found that garment types influenced on local sweat rate (p<0.1). 5. No interrelationships between rectal temperature and total body weight loss, local skin temperature and total body weight loss, and local skin temperature and local sweat rate were found. From this study, some possible method that we can estimate total body' weight loss judging from weight loss of garment. But considering the fact that clothing design factor, the physical characteristics of fabric and environmental factor such as humidity and wind velocity should be concerned in weight loss of garment, it should be studied further whether the total body weight loss can be estimated properly from the weight loss of garment. This experiment suggest that different parts of body with different types of garment can influence on body weight loss quite differently. Therefore, in order to get more precise results, more studies under the diversity of garment types should be done in the near future.

  • PDF

터빈익렬의 이동에 따른 손실 및 유동장에 관한 실험적 연구 (Losses and Flow Structure for the Movement of Turbine Blade Row)

  • 조수용;정양범
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.70-79
    • /
    • 2017
  • The output power of turbine is greatly affected by the losses generated within the passage. In order to develop a better turbine or loss models, an experimental study was conducted using a linear cascade experimental apparatus. The total pressure loss and flow structures were measured at two cross-sectional planes located downstream of blade row. Measurement was conducted in a steady state for the several different locations of the blade row along the rotational direction. The blade row moved by 20 % of the pitch, and tip clearance was varied from 2% to 8%. Axial-type blades were used and its blade chord was 200mm. A square nozzle was applied and its size was $200mm{\times}200mm$. The experiment was conducted at a Reynolds number of $3{\times}10^5$ based on the chord. Nozzle flow angle sets to $65^{\circ}$ based on the axial direction and the solidity of blade row was 1.38. From the experimental results, the total pressure loss was greatly varied in the receding region than in the entering region. The flow properties within the blade passage were strongly changed according to the location of blade row.

고압터빈 익렬 주위 유동해석에서 난류모델의 영향 평가 (EVALUATION OF TURBULENCE MODELS IN A HIGH PRESSURE TURBINE CASCADE SIMULATION)

  • ;이경언;정의준;조창열;손창호
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.53-58
    • /
    • 2012
  • Steady flow simulations through a high pressure turbine guide vanes were carried out. The main objective of the present work is to study the performance of turbulence models on the steady flow prediction from aerodynamic and aerothermal points of view. Three turbulence models were compared, namely SST, k-${\omega}$ and ${\omega}$-Reynolds stress models. The laminar results were also compared. The comparison was done with emphasis on the isentropic Mach number and heat transfer coefficient along the blade, and total pressure loss in the wake region. The calculated isentropic Mach number showed reasonable agreement with experimental data along the blade surface for all three turbulent models. For the total pressure loss in the wake region, ${\omega}$-Reynolds stress model showed the best agreement with the experimental data. However, unless using an appropriate transition model, the heat transfer coefficients of all three turbulent models showed poor agreement with experimental data.

항공기용 엔진제어기의 진공 브레이징 냉각유로 설계 및 압력손실 평가 (Design and Pressure Loss Evaluation of Vacuum Brazed Cooling Passage for Full Authority Digital Engine Control)

  • 한명재;설진운;정승호;차민경;장호연;김중회
    • 한국추진공학회지
    • /
    • 제26권2호
    • /
    • pp.72-78
    • /
    • 2022
  • 항공기용 엔진제어기는 주어진 환경에서 엔진의 최대 효율로 안전하게 운영될 수 있도록 엔진의 추력을 조절하고, 다른 보기 시스템들의 상태 감시를 수행하여 엔진의 모든 권한을 전자식으로 통합 제어하는 장치이다. 엔진제어기는 매우 높은 온도 환경에서도 정상 작동해야 한다. 따라서 엔진제어기는 내부 발열과 외부 유입 열을 고려한 최적의 방열설계가 필수적이다. 본 논문에서는 엔진제어기의 진공 브레이징 냉각유로를 설계하였다. 냉각유로의 전체 압력손실을 계산하기 위해 기본 형상에 대한 주손실과 입출구의 급격 확대/축소부, 유로 선회를 위한 밴드부 등의 비선형 형상에 대한 부차적손실을 계산하였다. 압력손실 이론식과 전산유체역학(Computational Fluid Dynamics, CFD) 해석을 활용한 합성추정법을 소개하여 각 비선형 형상에 대한 손실계수 계산하였다.

터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구 (Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade)

  • 전용민;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

엔진 마찰 특성에 미치는 부수적 인자의 영향 (The Effects of Additional Factors on the Engine Friction Characteristics)

  • 조명례;김중수;오대윤;한동철
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2159-2164
    • /
    • 2002
  • This paper reports on the effects of additional factors on the engine friction characteristics. The total friction loss of engine is composed of pumping and mechanical friction loss. The pumping loss was calculated from the cylinder pressure, and the mechanical friction loss was measured by strip-down method under the motoring condition. The various parameters were tested. The engine friction loss was much affected by oil and coolant temperature. The low viscosity oil was very effective to reduce the friction loss, and friction modifier was very useful to reduce the friction loss at lower engine speed. The engine friction loss was varied with engine running time because of surface roughness decreasing and oil degradation. To prevent oil-churning effect, it was very important to maintain the proper oil level. The presented results will be very useful to understand friction characteristics of engine.

AMTEC의 소디움액체 순환윅에서 압력손실 및 열손실해석 (Analysis of Pressure Drop and Heat Loss in Liquid Sodium Circulation Wick of AMTEC)

  • 이기우;이욱현;이석호;이계복
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.953-960
    • /
    • 2012
  • AMTEC기술은 열을 직접 전기로 변환시키는 기술로서 소디움을 작동유체로 사용하고 있으며, 작동유체의 순환은 모세관윅을 사용한다. 순환계통에는 증발부윅, 순환윅 및 응축부윅으로 구성되고, 각각의 윅은 소디움의 액체 또는 증기가 순환하면서 압력손실이 발생하므로 소디움의 순환을 위해서는 증발부윅의 모세관압력이 윅내의 총압력손실보다 커야만 한다. 본 연구에서는 100 watt급의 AMTEC시제품설계을 위해 소디움의 순환계통으로 구성되는 증발부윅, 순환윅 및 응축부윅에서의 압력손실과 증발부에서 응축부로의 열손실을 순환윅의 직경과 길이에 대해 분석하여 증발부윅의 소결입자 직경과 순환윅의 설계에 활용하코저 하였으며, 분석결과에서 순환계통의 총압력손실보다 큰 모세관압력을 위해서는 증발부윅의 소결입자크기는 10 ${\mu}m$이 적합한 결과를 얻었다.