• Title/Summary/Keyword: Total porosity

Search Result 280, Processing Time 0.025 seconds

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Effects of the Compaction and Size of Bottom Ash Aggregate on Thermal Conductivity of Porous Concrete (가압다짐과 바텀애시 골재 크기 특성이 다공성 콘크리트의 열전도도에 미치는 영향)

  • Yang, In-Hwan;Jeong, Seung-Tae;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.195-203
    • /
    • 2022
  • In this paper, the effects of the bottom ash aggregate sizes and compaction levels on the thermal conductivity of porous concrete were investigated. In this experimental study, bottom ash was used as aggregates after identifying the aggregate characteristics. SA mixtures included hybrid aggregates, and DA contained only one particle size. The water-binder ratio was fixed at 0.30, and the compaction levels were applied to the concrete specimens at 0.5, 1.5, and 3.0 MPa. Unit weight, total void ratio, and thermal conductivity were measured and analyzed. As the compaction level increased, the unit weight and thermal conductivity increased in the SA mixtures, but the total void ratio decreased. In addition, the thermal conductivity of the specimens under oven-dried condition were lower than that of the specimens under air-dried condition. The correlation between the unit weight, total porosity, and thermal conductivity of porous concrete was analyzed. The thermal conductivity-unit weight correlation was proportional, while the thermal conductivity-total void ratio correlation was inversely proportional.

The Cracking Reaction of Vacuum Gas Oil on Mordenite Modified by HF and Steaming (불화수소산과 스팀처리한 모더나이트상에서 진공가스유의 분해반응)

  • Lee, Kyong-Hwan;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.925-937
    • /
    • 1996
  • Three types of mordenites treated by steaming($SM_{6.5}$), HF solution for $SM_{6.5}(FM_a)$ and HF solutlon+steaming for $SM_{6.5}(FM_b)$ were prepared and used as cracking catalysts of vacuum gas oil. These samples were analysed by XRF and XPS for average and surface Si/Al atomic ratio, XRD for unit cell constants, nitrogen adsorption/desorption for porosity, pyridine-IR for acidic properties. In comparison with three type samples, $SM_{6.5}$ had a lot of acid amount and showed micropore volume mostly(>85% to total volume). Dealuminated $FM_a$, compared with $SM_{6.5}$, was decreased a little in acid amount and improved for porosity. Also, $FM_b$ was decreased further in acid amount and developed in mesopore dramatically. The catalytic activity and the yield of gasoline, kerosine+diesel and branched aromatic over the modified mordenites which have developed mesopore were improved. This is due to limited access of diffusion of large molecules within pore of the modified mordenites.

  • PDF

THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD (무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성)

  • Whang, Seung-Woo;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF

Effect of $M_{2}CO_{3}$(M=Li, Na) Addition on the Humidity Sensitivity of $V_{2}O_{5}$-doped $TiO_2$ ($V_{2}O_{5}$를 dopant로 한 $TiO_2$의 감습에 미치는 $M_{2}CO_{3}$(M=Li, Na)의 영향)

  • 강이국;송창열;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.343-346
    • /
    • 1995
  • In this paper, the effect of alkaline oxides on the humidity sensitivity of $V_2O_{5}$(2mol%)-doped $TiO_2$(98mol%) was investigated as functions of $Li_{2}Co_{3}$, $Na_{2}Co_{3}$. III-1. Measurement of Density. When the mole% of $Li_2$O is varied 0,1,2,5mol%, the more the mole% of additives is increased, the more difference of bulk and apparent density is largely narrowed. The difference of two densities of sample containing 2mol% $Na_2O$ was large all the moat. The sample containing 1mol% $Na_2O$ was small most. III-2. Observation of porosity. The porosity and total intrusion volume according to various amounts of $Li_2O$ was reduced and those of sample containing 2mol% $Na_2O$ as 31.13%, 0.1155mL/g was the highest and 1mol% $Na_2O$ was lowed most and 5, 10mol% $Na_2O$ was more high compare with sample without alkaline oxides. III-3. Characteristic of humidity sensitivity. 1. Impedance of samples containing $Li_2O$ was high compare with sample without alkaline oxides, so we thought it showed Poor sensitivity because it have no impedance changing rapidly as function of relative humidity. 2. When the humidity was increasing from 30RH% to 90RH%, the impedance of sample containing 2mol% $Na_2O$ at 120HZ changed exponential rapidly from 6${\times}$$10^{7}$$\Omega$) to 1.25${\times}$$10^4$$\Omega$. At under 50RH% and over 50RH%, the humidity sensitivity of samples containing 2mol% $Na_2O$ was best especially in the range of the low humidity. III-4. Characteristic of TG curves. When algal me oxide $M_{2}CO_{3}$(M=Li, Na) were added into $V_{2}O_{5}$-doped $TiO_2$, the stability of humidity sensitivity of samples containing amounts of $Li_2O$ was unstable. The samples containing 1mol% $Na_2O$ was unstable.

  • PDF

Characteristics of EVA-Polymer Modified Mortars Recycling Rapid-chilled Steel Slag Fine Aggregate (급냉 제강슬래그를 재활용한 EVA-폴리머 시멘트 모르타르의 특성)

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.652-660
    • /
    • 2008
  • For the recycling of rapid-chilled steel slag, the mechanical strengths and physical properties of EVA-polymer modified mortars with the various replacement ratios of rapid-chilled steel slag were investigated. Twenty five specimens of polymer modified mortars were prepared with the five different amounts of EVA-polymer modifier (0, 5, 10, 15, 20 wt%) and rapid-chilled steel slag (0, 25, 50, 75, 100 wt%). For the investigation of the characteristics of polymer modified mortars, the measurements such as water-cement ratio, unit volume weight, air content for fresh mortar and compressive strength, flexural strength, water absorption, hot water resistance, porosity and SEM investigation for curing specimens were conducted. As a results, with an increase in the replacement ratio of rapid-chilled steel slag, water-cement ratios decreased but unit volume weight increased remarkably. With increasing EVA-polymer modifier and the replacement ratio of rapid-chilled steel slag, percent of water absorption decreased but compressive and flexural strengths increased remarkably. By the hot water resistance test, mechanical strengths decreased but total pore volume and porosity increased remarkably. In the SEM observation, the components of specimen were shown to stick to each other in the form of co-matrix phase before hot water resistance test, but polymer modifier of co-matrix phase was decomposed or deteriorated after hot water resistance test.

Effect of the Tidal Sea Level Change on the Unconsolidated Sediment in Gwangyang Bay (광양만 조석 해수면 변동의 미고결 퇴적층에 대한 영향)

  • CHO Tae-Chin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • The characteristics of the unconsolidated sediment in Gwangyang bay was analyzed from the core samples. The porosity of the sediment showed irregular variation with respect to the sedimentation depth, which indicated that sediment weight-induced consolidation was not significant. Numerical analysis for the mechanical and hydraulic behavior of the unconsolidated sediment due to the tidal sea level change was processed. Because of the delayed excessive pore pressure change in the very low permeable mud medium, the magnitude of the excessive pore pressure for the duration of the minimum sea level exceeded the total stress from the sea water weight, which resulted in the negative (tensional) effective stress below the top surface. The in-situ effective stress, obtained by superposing the tensional effective stress on the solid weight-induced compressive stress, was remained to be tensile (quick-sand condition) near the top surface of the mud deposit. The occurrence of the quirk-sand condition provided a theoretical evidence for the insignificant consolidation and the irregular porosity variation of the sediment. When the sand is distributed on the top surface of the mud layer, the quick-sand condition occurred below the sandy mud layer and the downward movement of sand particles was facilitated.

  • PDF

Effect of Subsoiling on Growth and Yield of Sweetpotato in Continuous Sweetpotato Cropping Field (고구마 연작지에서 심토파쇄에 따른 고구마 생육 및 수량성 변화)

  • Lee, Hyeong-Un;Chung, Mi-Nam;Han, Seon-Kyeong;Ahn, Seung-Hyun;Lee, Joon-Seol;Yang, Jung-Wook;Song, Yeon-Sang;Kim, Jae-Myung;Nam, Sang-Sik;Choi, In-Hu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Storage root yield of sweetpotato was decreasing owing to continuous sweetpotato cropping, debasement of soil physical properties, increasing incidence of pest and disease. This study was conducted to evaluate the changes in physicochemical properties of the soil owing to subsoiling (subsoiling to 50 cm depth), and the effect on growth and yield of sweetpotato. The subsoiling treatments included subsoiling treated every year for two years, subsoiling in the first year, and no subsoiling control. The soil physical properties measured were bulk density, hardness, porosity, three phase. Bulk density, porosity, soild (%) of three phase were improved by subsoiling in topsoil and subsoil. Main vine length and vine yield in subsoiling soil were higher than those in no subsoiling soil, but those were not significantly different. Yield of marketable storage root in subsoiling soils treated every year for two years and treated in the first year was more increased 17% and 20% than no subsoiling soil, respectively. The number of marketable storage root per plant was also higher in subsoiling soils than no subsoiling soil, but it was not significantly different. Soluble solid contents and total free sugar contents of storage root of sweetpotato were not significantly different among the treatments. These results show that improving soil physical properties by subsoiling could promote high yield of marketable storage root in continuous sweetpotato cropping field.

The effect of Dynamite Explosion on Physical Properties of Orchard Soil (폭약(爆藥)에 의(依)한 과수원토양(果樹園土壤)의 물리성개량(物理性改良)에 관(關)한 연구)

  • Yoo, S.H.;Koh, K.C.;Cho, Y.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.61-66
    • /
    • 1979
  • This experiment was conducted to find out the simple and economical method to improve physical properties of the soil that was very poor for the establishment of orchard. Jeonnam clay loam soils distributed mainly on rolling and hill side slope, were treated with the explosion of two kinds of dynamite at the depth of 1 m. The change of physical properties was investigated vertically and horizontally after soil profile had settled to some extent. The results were summarized as : 1. The original soil was very high in bulk density and soil hardness. Total porosity and aeration porosities were lower than critical level providing root elongation. It was more apparent in the subsoil than in the surface soil. 2. It was recognized that soil mass destruction and cracking by dynamite explosion decreased soil bulk density and soil hardness and increased porosity, especially non-capillary pores. 3. Effective radius of the improved physical properties by explosion with two dynamites was 100cm at 60cm depth and 30cm at 80cm depth. But with the use of three dynamites it was 100cm at 80cm depth. 4. It was thought that soil mass destruction and cracking caused by explosion was uneven in the two dynamites, and three dynamites was more effective to improve physical properties evenly. 5. With the use of two dynamites, Ammonium explosive was superior to gelatin dynamite.

  • PDF

The Effect of Popped Rice Hulls Compost Application on Soil Chemical and Physical Properties in Fluvio-marine plain paddy soils (퇴화염토지 논에서 팽화왕겨 퇴비시용이 토양이화학성에 미치는 영향)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Byung-Su;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.403-408
    • /
    • 2006
  • Fluvio-marine paddy soils in Korea consist of high silt content and have the hardpan located below 20~30 cm from surface soil. This properties cause poor rice rhizosphere conditions such as low permeability and porosity, high bulk density and hardness. The aims of this study was to investigate the effect of popped rice hulls compost(PRHC) on soil fertility changes in the Fluvio-marine plain paddy soils. Total nitrogen content and nitrogen mineralization rate of PRHC were 1.17 and 33.5, respectively, and its C/N ratio was 35.4. Application of PRHC increased the content of organic matter and exchangeable potassium and improved the bulk density and porosity. The content of $NH_4-N$ in soil was high in the PRHC plot until maximum tillering stage. An uptake amount of fertilized nitrogen was greater in standard fertilization plot at early growth stage, however, it was greater more in PRHC plots at the ripening period than in standard fertilization plot. Among the PRHC treated plots, uptake amount was the greatest in 50% PRHC plot during the all growth period. Nitrogen efficiencies were higher in PRHC plot during the all growth period. Rice yields in all PRHC plots were lower than in standard fertilization, however, the yield of 40% PRHC plot was similar with that of standard.