• Title/Summary/Keyword: Total phosphorus removal process

Search Result 90, Processing Time 0.031 seconds

A Study on the Recycling of Foodwaste Leachate as External Carbon Sources Using Microbubble (마이크로버블을 이용한 음폐수의 외부탄소원으로서의 재활용 가능성 연구)

  • Lim, Ji-Young;Park, Soo-Young;Kim, Jin-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.651-657
    • /
    • 2016
  • The purpose of this research was to examine the possibility on the recycling of foodwaste leachate as external carbon sources using microbubble. The following operating conditions were selected: pressurizing tank 3 bar, circulation flow rate 3.65 LPM, and air flow rate 0.3 LPM with batch type. Microbubble contact time of 18 hours is optimal time to satisfy the recycling of foodwaste leachate as external carbon sources with batch type. HRT 18 hours came up to standard for external carbon sources, except for T-P concentration with continuous type. Coagulants need to be used for removal of dissolved phosphorus concentration by more than 88.5% of the total phosphorus concentration. The VFA was influenced by the organic decomposition rate and the concentration in the aerobic condition. It was considered that the VFA was needed for selection the optimal HRT or the addition of acid fermentation process in order to meet recycling standard of foodwaste leachate.

Effect of Microbial Activity by Using the Coagulants in the Biological Treatment Process (생물학적 처리공정에서 응집제 사용에 따른 미생물 활성도 영향)

  • Han, Seung-Woo;Chun, Mi-Hee;Park, Jun-Min;Kang, Dong-Hyo;Kang, Lim-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • Alum contained dominantly the monomeric aluminum species, and PAC contained the polymeric aluminum species. Both Alum and PAC has been improved removal of TP with increasing coagulant dose. Coagulant used directly influenced the microbial activity. Impact on microbial activity, the PAC was smaller than Alum. And impact on microbial activity and population according to the return sludge appeared to be minor.

Optimal Operational Characteristics of Wastewater Treatment Using Hydrocyclone in a Sequencing Batch Reactor Process (연속회분식반응기 공정의 하이드로사이클론 도입 하수처리 최적 운전특성)

  • Kwon, Gyutae;Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.295-309
    • /
    • 2022
  • The purpose of this study was to evaluate the operational characteristics of wastewater treatment using Sequencing Batch Reactor (SBR) with Aerobic Granular Sludge (AGS) separator in the pilot plant. Pilot plant experiments were conducted using SBR with AGS separator and pollution removal efficiencies were evaluated based on the operational condition and surface properties of AGS. The results of the operation on water quality of the effluent showed that the average concentration of total organic carbon, suspended solids, nitrogen, and phosphorus was 6.89 mg/L, 7.33 mg/L, 7.33 mg/L, and 0.2 mg/L, respectively. All these concentrations complied the effluent standard in Korea. The concentration of mixed liquor suspended solid (MLSS) fluctuated, but the AGS/MLSS ratio was constant at 86.5±1.3%. Although the AGS/MLSS ratio was constant, sludge volume index improved. These results suggested that the particle discharged fine sludge and increased the AGS praticle size in the AGS. Optical microscopy revealed the presence of dense AGS at the end of the operation, and particles of > 0.6 mm were found. Compared to those of belt-type AGS separator, the required area and power consumption of the hydrocyclone-type AGS separator were reduced by 27.5% and 83.8%, respectively.

Shipboard sewage treatment using Membrane Sequence Batch Reactor (MSBR을 이용한 크루즈선 오·폐수 처리 장치)

  • Kim, In-Soo;Lee, Eon-Sung;Oh, Yeom-Jae;Kim, Eog-Jo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.383-388
    • /
    • 2010
  • Lab scale experiment study was carried out for biological process development on cruise. SBR(Sequence Batch Reactor), MBR(Membrane Bioreactor), and MSBR(Membrane Sequence Batch Reactor) system were investigated for practical application on shipboard sewage treatment. From the results it was suggested that MSBR system might be suitable process for cruise in terms of pollutant removal efficiency, maintenance and special environmental conditions of cruise. About 99% of BOD, 98% of COD and 99% of SS were removed in MSBR system. In addition, about 76% of total nitrogen was reduced and the total phosphorus reduction averaged 59%.

Efficient Clean-up of Oil Spilled Shorelines Using the Compressed Air Jet System and Concomitant Microbial Community Analysis (압축공기 분사시스템을 이용한 유류오염 해안의 효율적 정화 및 이에 따른 미생물군집분석)

  • Chang, Jae-Soo;Kim, Kyung Hee;Lee, Jae Shik;Ekpeghere, Kalu I.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.353-359
    • /
    • 2013
  • The objectives of this study were to investigate effectiveness of the Compressed Air Jet (CAJ) System for cleaning up shorelines contaminated with crude oils and to examine effects of the system on total petroleum hydrocarbon (TPH) removal and microbial community changes before and after remediation of the oil-contaminated shorelines. These data will lead to better understanding of optimized remediation process. About 66% of TPH reduction was observed when the contaminated site was treated with the CAJ System 2, 3, 4, and 5 times. This treatment system was more efficient than the seawater pumping system under similar treatment conditions (by 40%). By the way, little oil degrader communities were observed despite a potential function of the air jet system to stimulate aerobic oil degraders. The apparent low population density of the oil degraders might be as a result of low concentration of TPH as a carbon source and limiting nutrients such as nitrogen and phosphorus. It was proposed that the CAJ System would contribute significantly to removal of residual oils on the shorelines in combination with addition of these limiting nutrients.

A Study on the Applicability of Torrefied Wood Flour Natural Material Based Coagulant to Removal of Dissolved Organic Matter and Turbidity (용존성 유기물질 및 탁도 제거를 위한 반탄화목분 천연재료 혼합응집제의 적용성에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.472-487
    • /
    • 2020
  • With the emergence of abnormal climate due to the rapid industrialization, the importance of water quality management and management costs are increasing every year. In Korea, for the management of total phosphorus and total nitrogen, the major materials causing the water quality pollution, coagulants are injected in sewage treatment plants to process organic compounds. However, if the coagulant is injected in an excessive amount to PAC (Poly Aluminium Chloride), a secondary pollution problem might occur. As such, a study on the applicability of natural material-based coagulant is being conducted in Korea. Thus, this study aimed to evaluate the applicability of a mixed coagulant developed by analyzing water quality pollutants T-P, T-N as well as their turbidity, in order to derive the optimum mixing ratio between PAC and torrefied wood flour for the primary settling pond effluent. Under the condition where the content of PAC (10%) and torrefied wood flour is 1%, T-P showed the maximum removal efficiency of 92%, and T-N showed approximately 22%. This indicates that removal of T-N which includes numerous positively charged organic compounds that are equivalent to mixed coagulant is not well accomplished. Turbidity showed the removal efficiency of approximately 91%. As such, 1% of torrefied wood flour was determined to be the optimum addition. As a result of analyzing the removal efficiency for organic compounds by reducing PAC concentration to 7%, T-P showed a high maximum removal efficiency of 91%, T-N showed 32%, and turbidity showed the maximum of 90%. In addition, a coagulation process is performed by using the mixed coagulant based on 1% content of torrefied wood flour produced in this study by performing a coagulation performance comparative experiment with PAC (10%). As a result, PAC concentration was reduced to 30-50%, a similar performance with other coagulants in market was secured, PAC injection amount was reduced that an economic effect can be achieved, and it is considered to perform a stable water treatment that reduces the secondary pollution problem.

Dominance of Endospore-forming Bacteria on a Rotating Activated Bacillus Contactor Biofilm for Advanced Wastewater Treatment

  • Park, Seong-Joo;Yoon, Jerng-Chang;Shin, Kwang-Soo;Kim, Eung-Ho;Yim, Soo-Bin;Cho, Yeon-Je;Sung, Gi-Moon;Lee, Dong-Geun;Kim, Seung-Bum;Lee, Dong-Uk;Woo, Sung-Hoon;Koopman, Ben
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.

Anaerobic Digestion Biochemical Sludge Produced from Municipal Sewage Treatment Process (하수처리시설에서 발생된 약품 잉여슬러지의 혐기성 소화 특성)

  • Cho, Sang Sun;Kang, Ho;Lim, Bong Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.561-569
    • /
    • 2014
  • This study was carried out to get the characteristics of anaerobic digestion for chemical/biological sludge produced from municipal sewage treatment plant for phosphorus. Anaerobic mesophilic batch tests showed that the ultimate biodegradability of waste activated sludge showed 31%, PACl sludge 24%, Alum sludge 26%, respectively. At the S/I 1.0, 75% of total biodegradable volatile solids (TBVS) of waste activated sludge was degraded with an initial rapid decay coefficient, k1 of $0.1129day^{-1}$ and 74% of TBVS of PACl sludge with k1 of $0.0998day^{-1}$, and 76% of TBVS of Alum sludge with k1 of $0.1091day^{-1}$ for 20 days. During the operation of SCFMRs, the 3 reactor (Control, PACl, Alum) pH maintained 6.7~7.0 and the reactor alkalinity maintained 1,800~ 2,200 mg/L as $CaCO_3$. The average biogas production rates of SCFMRs fed with PACl sludge and Alum sludge were 0.089 v/v-d and 0.091 v/v-d, respectively, which was 27~28% lower than that of the control (0.124 v/v-d) at an HRT (hydraulic retention times) of 20 days. And the methane content during the operation ranged 70~76% in 3 reactor. The average TVS removal efficiency of SCFMRs fed with PACl sludge and Alum sludge were 19.6% and 19.9%, respectively, at an HRT of 20 days, which showed 4% lower than that of the control (23.8%). The average BVS removal efficiency of SCFMRs fed with PACl sludge and Alum sludge were 25.8% and 26.9%, respectively, at an HRT of 20 days, which was 8~9% lower than that of the control (34.5%).

The Effect of Algae on Coagulation and Filteration of Water Treatment Process (정수처리과정중 응집및 여과에 미치는 조류의 영향)

  • Lim, Young-Sung;Song, Won-Seb;Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 2000
  • Seasonal variations of dominant algae species and the effects of these algae on coagulation and filteration of water treatment were investigated at Chilseo water treatment plant in downstream of Nakdong river from January in 1995 to Desember of 1998. The water quality of Nakdong river was found to be a hyper eutrophic state during the investigation periods. In the measurement, Chlorophyll-a contents ranged $20.7{\sim}180.9{\mu}g/l$ and total nitrogen contents(T-N) and total phosphorus contents(T-P) exceeded more than 3.4mg/l and 0.1mg/l, respectively. The changes in dominant algae species was in the order of Stepanodiscus sp., Asterionella sp., Melosira sp., Microcystis sp. and Synedra sp. from spring to winter. Microcystis sp. especially, was blooming during summer and Synedra sp. and Stepanodiscus sp. during winter. Although most diatomous algae appeared in the water treatment process caused filter clogging and reduced efficiency of coagulation and sedimentation, Synedra sp. and Stepanodiscus sp were revealed as the main trouble algae. Malfunction of water treatment process caused by Synedra sp. and Stepanodiscus sp. started at the algae concentrations of 800cells/ml and 1,820cells/ml, respectively. When chlorophyll-a content was $18.9{\mu}g/l$, the optimum amounts of coagulant were found to be 40mg/l of Alum and 16mg/l of PACS. Under condition of chlorophyll-a content of $154.1{\mu}g/l$, addition of Alum at the level of 75mg/l and PACS at the level of 35mg/l showed the lowest turibidity. The result indicates that increased amounts of the coagulants should be added for a better water treatment as chlorophyll-a contents increased. Addition of Alum at the amount of 60mg/l and 30mg/l of PACS removed Stepanodiscus sp. algae at the rate of 85% and 83%, respectively. In case of Synedra sp., 50mg/l of Alum and 25mg/l of PACS showed removal rates of 79% and 81%, respectively. Synedra sp. algae at the standing crops of 1,500cells/ml started filter clogging and a filtering process was completely inhibited after 8 hours. At this situation the filter clogging by Synedra sp. algae occurred at the depth of 5cm from the top anthracite layer. On the other, other algae did filter clogging at the depth of 10cm.

  • PDF