DOI QR코드

DOI QR Code

A Study on the Recycling of Foodwaste Leachate as External Carbon Sources Using Microbubble

마이크로버블을 이용한 음폐수의 외부탄소원으로서의 재활용 가능성 연구

  • 임지영 (인천대학교 건설환경공학과) ;
  • 박수영 (인천대학교 건설환경공학과) ;
  • 김진한 (인천대학교 건설환경공학과)
  • Received : 2015.11.23
  • Accepted : 2016.06.09
  • Published : 2016.08.01

Abstract

The purpose of this research was to examine the possibility on the recycling of foodwaste leachate as external carbon sources using microbubble. The following operating conditions were selected: pressurizing tank 3 bar, circulation flow rate 3.65 LPM, and air flow rate 0.3 LPM with batch type. Microbubble contact time of 18 hours is optimal time to satisfy the recycling of foodwaste leachate as external carbon sources with batch type. HRT 18 hours came up to standard for external carbon sources, except for T-P concentration with continuous type. Coagulants need to be used for removal of dissolved phosphorus concentration by more than 88.5% of the total phosphorus concentration. The VFA was influenced by the organic decomposition rate and the concentration in the aerobic condition. It was considered that the VFA was needed for selection the optimal HRT or the addition of acid fermentation process in order to meet recycling standard of foodwaste leachate.

본 연구의 목적은 마이크로버블을 이용하여 외부탄소원으로서 음폐수의 재활용 가능성을 검토해 보고자 하였다. 가압탱크 압력 3 bar, 순환유량 3.65 LPM, 공기주입량 0.3 LPM의 회분식으로 진행된 실험에서 마이크로버블 접촉시간의 경우 18시간이 음폐수 외부탄소원의 재활용 기준을 만족하는 적정 시간임을 확인하였다. 회분식 실험 결과를 바탕으로 체류시간을 12, 14, 16, 18시간으로 설정하여 연속식 실험을 하였다. 연속식 실험에서도 체류시간 18시간에서 T-P를 제외한 SS, T-N, n-Hexane 추출물질, VFA 항목에서 외부탄소원 재활용기준을 만족하였다. 음폐수 원수 중 용존성 인의 농도가 전체 인 농도 중 약 88.5% 이상으로 용존성 인의 제거를 위해서는 응집제 사용이 필요함을 알 수 있었다. 또한, VFA의 경우 호기성 조건에서 유기물의 분해속도 및 농도에 따라 크게 영향을 받기 때문에 외부탄소원 재활용기준을 만족하기 위해서는 적절한 체류시간 선정 또는 산발효조 공정의 추가가 필요할 것으로 사료된다.

Keywords

References

  1. Choi, C. H., Lee, E. S., Hwang, P. G., Ju, Y. S. and Jin, S. J. (2005). "A study on the fermentation process in the production of organic acids from foodwastes." Journal of Korea Society of Waste Management, Vol. 22, No. 1. pp. 79-85.
  2. Im, S. H., Kim, M. G. and Lee, M. G. (2005). "Physicochemical characteristic changes of food waste leachate by mixed coagulants (MC)." Journal of Environmental Science, Vol. 11, No. 1, pp. 46-49.
  3. Jang, S. H., Cho, H. J. and Son, Y. I. (2000). "A study on VFAs recovery from food waste for exterior carbon source of denitrification." The Korea Journal of Sanitation, Vol. 15, No. 3. pp. 15-23.
  4. Kawaraha, A., Sadatomi, M. and Matsyama, F. (2009). "Prediction of microbubble dissolution characteristics in water and sea water." Experimental Thermal and Fluid Science, Vol. 33, No. 5, pp. 883-894. https://doi.org/10.1016/j.expthermflusci.2009.03.004
  5. Kil, S. J. (2010). A study for reuse of treated wastewater by using a combined system of a micro-nano bubbles ozonation and microfiltration, Ph.D. Dissertation, Dong-A University, Busan, Korea.
  6. Kim, J. B., Han, M. R., Jung, B. G. and Choi, Y. I. (2014). "A study on the characteristics of organic matter removal in food wastewater by using cyclonic-DAF (Dissolved Air Flotation) process with variation of recycling flow rate." Journal of Korean Society of Environmental Technology, Vol. 15, No. 6, pp. 420-427.
  7. Kim, J. O. and Jeong, S. U. (2004). "A study on solid-liquid separation of swine wastewater using coagulation and dissolved air flotation." Journal of the Organic Resource Recycling Association, Vol. 12, No. 2, pp. 101-109.
  8. Kurup, N. and Naik, P. (2010). "Microbubbles: A Novel Delivery System." Asian Journal of Pharmaceutical Research and Health Care, Vol. 2, No. 3, pp. 228-234.
  9. Lee, B. C., Ahn, J. H., Lee, J. H. and Bae, W. K. (2011). "Advanced biological treatment of industrial wastewater using food waste leachate as an external carbon source: Full-Scale Experiment." Journal of Korean Society on Water Quality, Vol. 27, No. 4, pp. 461-466.
  10. Lee, S. I., Park, J. H., Ko, K. B. and Koopman, B. (1997). "Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors." Water Research, Vol. 31, No. 7, pp. 1807-1812. https://doi.org/10.1016/S0043-1354(97)00004-3
  11. Lee, S. K. (2013). Recycling present and development direction of Food waste, Korea Food Recycling Association, Korea.
  12. Lim, J. Y., Kim, H. S., Park, S. Y. and Kim, J. H. (2015). "Evaluation of characteristics for microbubble generation according to venturi nozzle specification." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 9, pp. 6397-6402. https://doi.org/10.5762/KAIS.2015.16.9.6397
  13. Margery S. B. (2000). The American Heritage Dictionary of English Language, 4th ed., Houghton Mifflin Company, Boston, USA.
  14. Ministry of Environment (2008). A study on installation and operation guide line on optimum model of method for energy recovery from food waste and food waste leachate, No. 11-1480000-000944-0 (in Korean).
  15. Ministry of Environment (2013). Waste statics survey (in Korean).
  16. Ministry of Environment (2014). Standard methods for examination of water quality (in Korean).
  17. Park, J. K., Kim, B. G., Seo, I. S. and Lee, S. I. (2001). "Fermentation of food waste and utilization as external carbon source in Nitrogen and phosphorus removal process." Journal of Korean Society on Water Environment, Vol. 17, No. 2, pp. 261-271.
  18. Park, J. W. and Choi, D. H. (2011). "Effect of biodegradation and denitrification characteristics using carbon source with food wastes leachate." Journal of Korean Society of Urban Environment, Vol. 11, No. 1, pp. 41-48.
  19. Parmar, R. and Majumder, S. K. (2013). "Microbubble generation and microbubble aided transport process intensification A state of the art report." Chemical Engineering and Processing, Vol. 64, pp. 79-97. https://doi.org/10.1016/j.cep.2012.12.002
  20. Sudokwon landfill site management corp (SLC) (2008). Development and validation of biogas using organic waste, No. 2009-10-013-01 (in Korean).
  21. Tabei, K., Haruyamu, S., Yamaguchi, S., Shirai, H. and Takakusagi, F. (2007). "Study of microbubble generation by swirl jet." Journal of Environment and Engineering, Vol. 2, No. 1, pp. 172-182. https://doi.org/10.1299/jee.2.172