Browse > Article
http://dx.doi.org/10.5322/JESI.2022.31.4.295

Optimal Operational Characteristics of Wastewater Treatment Using Hydrocyclone in a Sequencing Batch Reactor Process  

Kwon, Gyutae (BlueBank Co. Ltd.)
Kim, Hyun-Gu (BlueBank Co. Ltd.)
Ahn, Dae-Hee (BlueBank Co. Ltd.)
Publication Information
Journal of Environmental Science International / v.31, no.4, 2022 , pp. 295-309 More about this Journal
Abstract
The purpose of this study was to evaluate the operational characteristics of wastewater treatment using Sequencing Batch Reactor (SBR) with Aerobic Granular Sludge (AGS) separator in the pilot plant. Pilot plant experiments were conducted using SBR with AGS separator and pollution removal efficiencies were evaluated based on the operational condition and surface properties of AGS. The results of the operation on water quality of the effluent showed that the average concentration of total organic carbon, suspended solids, nitrogen, and phosphorus was 6.89 mg/L, 7.33 mg/L, 7.33 mg/L, and 0.2 mg/L, respectively. All these concentrations complied the effluent standard in Korea. The concentration of mixed liquor suspended solid (MLSS) fluctuated, but the AGS/MLSS ratio was constant at 86.5±1.3%. Although the AGS/MLSS ratio was constant, sludge volume index improved. These results suggested that the particle discharged fine sludge and increased the AGS praticle size in the AGS. Optical microscopy revealed the presence of dense AGS at the end of the operation, and particles of > 0.6 mm were found. Compared to those of belt-type AGS separator, the required area and power consumption of the hydrocyclone-type AGS separator were reduced by 27.5% and 83.8%, respectively.
Keywords
Aerobic granular sludge; Hydrocyclone; Pilot plant; Separator; Sequencing batch reactor; Wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Winkler, M. K., Bassin, J. P., Kleerebezem, R., De Bruin, L. M. M., Van den Brand, T. P. H., Van Loosdrecht, M. C. M., 2011, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO GAO competition at high temperatures, Water Res., 45, 3291-3299.   DOI
2 Yan, N., Marschner, P., Cao, W., Zuo, C., Qin, W., 2015, Influence of salinity and water content on soil microorganisms, International Soil and Water Conservation Res., 3, 316-323.   DOI
3 Yang, S. F., Tay, J. H., Liu, Y., 2005, Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules, J. Env. Eng., 131, 86-92.   DOI
4 Li, X., Luo, J., Guo, G., Mackey, H. R., Hao, T., Chen, G., 2017, Seawater-based wastewater accelerates development of aerobic granular sludge: A laboratory proof-of-concept, Water Res., 115, 210-219.   DOI
5 Corsino, S. F., Devlin, T. R., Oleszkiewicz, J. A., Torregrossa, M., 2018, Aerobic granular sludge: State of the art, applications, and new perspectives, Adv. Wastewater Treat., 155.
6 Kim, H. G., Ahn, D. H., 2019b, Study on the biological denitrification reaction of high-salinity wastewater using an Aerobic Granular Sludge (AGS), Kor. Soc. Environ. Eng. 28, 607-615.
7 El-Mamouni, R., Leduc, R., Guiot, S. R., 1998, Influence of synthetic and natural polymers on the anaerobic granulation process, Water Sci. Technol., 38, 341-347.   DOI
8 Carlsson, B., 1998, An Introduction to sedimentation theory in wastewater treatment. Systems and Control Group, Uppsala University.
9 Dangcong, P., Bernet, N., Delgenes, J. P., Moletta, R., 1999, Aerobic granular sludge a case report, Water Res., 33, 890-893.   DOI
10 de Bruin, L. M. M., De Kreuk, M. K., Van Der Roest, H. F. R., Uijterlinde, C., Van Loosdrecht, M. C. M., 2004, Aerobic granular sludge technology: an alternative to activated sludge?. Water Sci. Technol., 49, 1-7.
11 de Kreuk, M. K,. 2006, Aerobic granular sludge: scaling up a new technology, Delft University of Technology.
12 Guo, C., Wang, Y., Luo, Y., Chen, X., Lin, Y., Liu, X., 2018, Effect of graphene oxide on the bioactivities of nitrifying and denitrifying bacteria in aerobic granular sludge, Ecotoxicol. Environ.. Safety, 156, 287-293.   DOI
13 de Kreuk, M. K., Heijnen, J. J., van Loosdrecht, M. C. M., 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761-769.   DOI
14 de Sousa Rollemberg, S. L., Barros, A. R. M., Firmino, P. I. M., Dos Santos, A. B., 2018, Aerobic granular sludge: cultivation parameters and removal mechanisms. Bioresour, Technol,, 270, 678-688.   DOI
15 Demoulin, G., Rudiger, A., Goronszy, M. C., 2001, Cyclic activated sludge technology-recent operating experience with a 90,000 pe plant in Germany, Water Sci. Technol. 43, 331-337.   DOI
16 Chu, H., Liu, X., Ma, J., Li, T., Fan, H., Zhou, X., Zhang, Y., Li, E., Zhang, X., 2021, Two-stage anoxic-oxic (A/O) system for the treatment of coking wastewater: Full-scale performance and microbial community analysis, Chem. Eng. J., 417, 129204.   DOI
17 Kaur, N., Prajapati, D. R., Sharma, S. K., 2014, Role of SBR technique in waste watertreatment plants: A review, National conference on advancements and futuristic trends in mechanical engineering, 1, 170-176.
18 de Kreuk, M. K., Kishida, N., Van Loosdrecht, M. C. M., 2007, Aerobic granular sludge state of the art, Water Sci. Technol., 55, 75-81.
19 Haaksman, V. A., Mirghorayshi, M., Van Loosdrecht, M. C. M., Pronk, M., 2020, Impact of aerobic availability of readily biodegradable Cod on morphological stability of aerobic granular sludge, Water Res., 187, 116402.   DOI
20 Iorhemen, O. T., Hamza, R. A., Zaghloul, M. S., Tay, J. H. 2019. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis. Water Res., 156, 305-314.   DOI
21 Kwon, G. T., Kim, H. G., Ahn, D. H., 2021, Effects on the stability of Aerobic Granular Sludge (AGS) by aerobic granular sludge separator, Kor. Soc. Environ. Eng., 30, 1081-1092.
22 KEITI, Korea Evnironmental Industry and Technology Institute, 2018, Continuous batch-type advanced sewage treatment technology that maintains aerobic granular sludge concentration with a belt-type filter, New technology certificate number 537.
23 Kim, H. G., Ahn, D. H., 2019a, Effects of different hydraulic retention times on contaminant removal efficiency using aerobic granular sludge, Kor. Soc. Environ. Eng. 28, 669-676.
24 Kim, H. G., Ahn, D. H., 2019c, Effects on microbial activity of Aerobic Granular Sludge (AGS) in high-salinity wastewater, Kor. Soc. Environ. Eng. 28, 629-637.
25 Lee, Y. G., Chon, H. N., Gin, H. Y., Lee, J. H., Moon, J. S., Lee, J. S., Ye, H. Y., Ahn, D. H., Ryu, J. H., 2016, Aerobic granular sludge separator device, registered patent, 10-1613711.
26 Bueno, R. D. F., Faria, J. K., Uliana, D. P., Liduino, V. S., 2020, Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge, Environ. Technol., 1-15.
27 Liu, Y., Wei, D., Xu, W., Feng, R., Du, B., Wei, Q., 2019, Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: system evaluation and community structure, Bioresour. Technol., 288, 121504.   DOI
28 Liu, Y., Liu, Q. S., 2006, Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors, Biotechnol. Adv., 24, 115-127.   DOI
29 American Public Health Association (APHA), 2008, Standard methods for the examination of water and wastewater, 21st edition, American public health association, Washington D.C., USA.
30 Long, B., Yang, C. Z., Pu, W. H., Yang, J. K., Liu, F. B., Zhang, L., Zhnag J., Cheng, K., 2015, Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor, Bioresour. Technol., 182, 314-322.   DOI
31 Mudhoo, A., Sharma, S. K., 2011, Microwave irradiation technology in waste sludge and wastewater treatment research, Critical reviews in Environment, Sci. Technol., 41, 999-1066.
32 Pan, S., Tay, J. H., He, Y. X., Tay, S. T. L., 2004, The effect of hydraulic retention time on the stability of aerobically grown microbial granules, Lett. Appl. Microbiol., 38, 158-163.   DOI
33 Pronk, M., De Kreuk, M. K., De Bruin, B., Kamminga, P., Kleerebezem, R. V., Van Loosdrecht, M. C. M., 2015, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84, 207-217.   DOI
34 Purba, L. D. A., Ibiyeye, H. T., Yuzir, A., Mohamad, S. E., Iwamoto, K., Zamyadi, A., Abdullah, N., 2020, Various applications of aerobic granular sludge: A review, Environ. Technol. Innovation, 101045.
35 Szabo, E., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., 2016, Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time, Water, 8, 172.   DOI