• Title/Summary/Keyword: Total heat release

검색결과 142건 처리시간 0.024초

CONE CALORIMETER STUDIES OF WOOD SPECIES

  • Grexa, Ondrej;Horvathova, Elena;Osvald, Anton
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.77-84
    • /
    • 1997
  • Cone calorimeter measurements can be used for the calculation of effective material properties, which can be used as input parameters in modeling of fire. Main parameter measured in Cone calorimeter is heat release rate. Some other parameters as time to ignition, effective heat of combustion, mass loss rate or total heat released is also measured in Cone calorimeter. Total heat released is important from the point of view of total energy available in material in Fire situation. Cone calorimeter. measurements were done on several wood species (oak, beech, spruce, poplar). Measurements were provided at external irradiances 30, 50 and 65 ㎾/$m_2$ in horizontal orientation. Heat release rate data were evaluated and compared as a function of external irradiance for various species of wood. furthermore the influence of external irradiance on effective heat of combustion and total heat release was also evaluated for the period of flame combustion.

  • PDF

영동지역 주요 침엽수종 및 활엽수종 생엽의 연소특성에 관한 연구 (A Study on Combustion of Living Leaves for Various Coniferous Trees and Broadleaf Trees in Youngdong Areas)

  • 이해평;이시영;박영주
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.96-103
    • /
    • 2009
  • This study was fulfilled to investigate the forest fire risk of forest fuels based on the combustion characteristics of living leaves of coniferous trees and broadleaf trees naturally growing in Youngdong areas of Gangwon Province by using cone calorimeter and smoke density chamber. According to the result, Pinus densiflora and Pinus rigida among coniferous trees released a greater amount of heat release than other kinds. The total smoke release varied depending on the species, whereas Pinus koraiensis showed the largest amount of smoke release. With regard to maximum smoke density, it was much higher in coniferous trees than in broadleaf trees. With regard to smoke temperature, Pinus densiflora showed the lowest compared to other kinds up until 200s from the ignition, but all most trees uniformly maintained constant temperature of about $70^{\circ}C$ after 200s. The concentrations of CO and $CO_2$ release were drastically increased at about 150s and then gradually decreased thereafter. Pinus densiflora showed a bit higher CO release than broadleaf trees, but there was no distinct difference in $CO_2$ release among tress.

탄소재료의 적용 방법에 따른 파티클 보드의 연소 특성 (Evaluation of Fire Characteristics for Particle-board with Exfoliated Graphite Nanoplatelets Added)

  • 서현정;조정민;황욱;이민철
    • 한국연소학회지
    • /
    • 제22권4호
    • /
    • pp.1-8
    • /
    • 2017
  • This study was conducted to evaluate the fire retardant performance of exfoliated graphite nanoplatelets (xGnP) applied for particleboard. This work measured heat release rate(HRR), total heat release(THR) and smoke production rate(SPR) of xGnP added particleboard, using cone calorimeter to assess its fire characteristics according to the KS F ISO 5660-1 standard code. Heat release rates of all specimens treated by xGnP were less than the $200kW/m^2$ for a total experiment period of five minutes. Heat release rates of the specimens coated with xGnP were lower than those of the specimens made by mixing wood particles with xGnP directly. Meanwhile, the total heat release rates of xGnP coated specimen maintained quite lower level than the uncoated so the xGnP coating were effective in improving the fire retardant performance of particleboard. However, the smoke emission peaking problem at the initial combustion period, which was caused by adding base coating materials, should be resolved for further satisfaction as a fire retardant materials.

콘칼로리미터를 이용한 내장판용 복합재료의 화재특성 (Fire Characteristics of Composites for Interior Panels Using Cone calorimeter)

  • 이철규;정우성;이덕희
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.55-59
    • /
    • 2004
  • Composite materials were used widely due to merit of light weight, low maintenance cost and easy installation. But it is the cause of enormous casualties to men and properties because of weak about the fire. Particularly, it is more serious in case of subway train installed composite materials. For this reason, experimental comparison has been done fur measuring heat release rate(H.R.R) and smoke production rate(S.P.R) of interior panels of electric motor car using cone calorimeter. A high radiative heat flux of 50kW/㎡ was used to bum out all materials and to simulate the condition of fully developed fire case in the tests. It was observed that Heat Release Rate and Smoke Production Rate curves were dependent on the kinds of the interior materials. From the heat release rate curves, the sustained ignition time, peak heat release rate and total heat release rate were deduced, These data are useful in classifying the materials by calculating two parameters describing the possibility to flashover.

밀폐된 구획실의 체적변화가 최대 열발생률에 미치는 영향에 관한 수치해석 연구 (A Numerical Study on the Effect of Volume Change in a Closed Compartment on Maximum Heat Release Rate)

  • 윤홍석;남동군;황철홍
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.19-27
    • /
    • 2017
  • 밀폐된 구획실 화재에서 화원의 면적 및 위치, 화재성장률, 구획 체적의 변화가 열발생률을 포함한 주요 화재특성에 미치는 영향이 검토되었다. 이를 위해 닫힌 개구부가 적용된 ISO 9705 화재실을 대상으로 Fire Dynamics Simulator (FDS)를 활용한 화재시뮬레이션이 수행되었다. 주요 결론으로서, 화원의 면적 및 위치의 변화는 최대 열발생률, 총 열량, 상층부의 최대 온도 및 화학종 농도를 포함한 구획 내의 열적 특성과 화학적 특성에 큰 영향을 주지 않음을 확인하였다. 그러나 화재성장률과 구획 체적의 증가는 최대 열발생률 및 총 열량의 증가를 가져오며, 한계산소농도의 감소 및 최대 CO 농도의 증가를 발생시킨다. 마지막으로 화재성장률과 구획 체적의 함수로 표현된 최대 열발생률의 상관식을 도출하여, 밀폐된 구획실 화재에 대한 화재성장곡선의 적용을 위한 방법론이 제안되었다.

건축용 바닥재의 외부복사열에 의한 화재위험성 비교 연구 (A Study on the Fire Risk Comparison of Building Flooring Materials by External Heat Flux)

  • 박영주;김영탁
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.20-24
    • /
    • 2017
  • In this study, we have performed the Cone Calorimeter test in accordance with ISO 5660-1 to check the combustion characteristics of building flooring materials. The fire risk of these materials were evaluated by construction code, KFI criteria and standards of flame retardant performance. When samples exposed to external heat flux, all samples consumed a lot of Oxygen for a long time. So heat release from sample burning continued so long. And also all samples produced so much smoke. Even though a few samples were satisfied with only peak heat release rate criteria, all 8 samples were not satisfied with criteria of peak heat release rate and total heat released together. The results of 5 min total heat released were $15.9MJ/m^2{\sim}5.9MJ/m^2$. It menas the results are more than 2~6 times higher than the criteria. The results of 10 min total heat released were $30.1MJ/m^2{\sim}100.8MJ/m^2$. It means the results are more than 3~12 times higher than the criteria. 6 of 8 samples were not satisfied with Dm.corr.(corrected maximum smoke density) criteria. The building flooring materials which we used for this test ignited very fast and the burning continued so long. It means these samples are susceptible to fire.

Burning Characteristics of Wood-based Materials using Cone Calorimeter and Inclined Panel Tests

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.18-25
    • /
    • 2002
  • Research to discuss the fire performance of materials requires tools for measuring their burning characteristics and validated fire growth models to predict fire behavior of the materials under specific tire scenarios using the measured properties as input for the models. In this study, burning characteristics such as time to ignition, weight loss rate, flame spread, heat release rate, total heat evolved, and effective heat of combustion for four types of wood-based materials were evaluated using the cone calorimeter and inclined panel tests. Time to ignition was affected by not only surface condition and specific gravity of the tested materials but also the type and magnitude of heat source. Results of weight loss rate, measured by inclined panel tests, indicated that heat transfer from the contacted flame used as the heat source into the inner part of the specimen was inversely proportional to specific gravity of material. Flame spread was closely related with ignition time at the near part of burning zone. Under constant and severe external heat flux, there was little difference in weight loss rate and total heat evolved between four types of wood-based panels. More applied heat flux caused by longer ignition time induced a higher first peak value of heat release rate. Burning characteristics data measured in this study can be used effectively as input for fire growth models to predict the fire behavior of materials under specific fire scenarios.

화재감지 센서 작동시간 및 열방출률에 대한 실험연구 (A Experimental Study on the Heat Release Rate to activate Fire Detection Sensor)

  • 홍성호
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1358-1361
    • /
    • 2012
  • This paper presents a study on the analysis for activation time and threshold value of heat detection sensor using HRR(Heat Release Rate). And it is represented to quantity of heat to activate heat detection sensor. The experiment is conducted to measure activation time and HRR of fire detection sensor burning alcohol and n-heptane. In order to burn the alcohol and n-heptane using $43.5cm(L){\times}43.5cm(W){\times}5cm(D)$ and $33cm(L){\times}33cm(L){\times}5cm(D)$ steel pan and the quantity of alcohol and n-heptane are 2.5 L and 650 g, respectively. The results show that peak HRR are in case of alcohol 66.13 kW and in case of n-heptane 151.64 kW, respectively. Total heat releases of heat detection sensor are in case of alcohol approximately 20.7 MJ and in case of n-heptane approximately 18 MJ, respectively.

Study on the Combustion Characteristics of Tulip Tree (Liriodendron tulipifera) for Use as Interior Building Materials

  • Min Ji KIM;Sang-Joon LEE;Sejong KIM;Myung Sun YANG;Dong Won SON;Chul-Ki KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권5호
    • /
    • pp.410-418
    • /
    • 2023
  • In this study, the combustion characteristics of the Tulip tree, which is the representative broad-leaved afforestation tree in Korea, were analyzed. The flame retardant performance of the Tulip tree was analyzed by analyzing combustion characteristics on a total of three test samples; flame retardant treated, both flame retardant and oil stain-treated, and untreated. Then the flame retardance grade was classified for each of them. According to the result, test samples showed the strongest flame retardance were in order of flame retardant treated (C), both flame retardant and oil stain-treated (B), and untreated (A). As a result of analyzing the total heat emission and maximum heat emission rates, which is the evaluation standard for interior materials of Korean domestic buildings, test samples with flame retardant treat or flame retardant and oil stain treat were qualified for the flame-retardant standard. Both flame retardant and oil stain-treated samples showed higher total heat release (THR) and heat release rate compared to flame retardant-treated samples as the oil causes combustion with oxygen. On the other hand, they didn't qualify the THR in Quasi-non-combustible standards. To determine the correlation between the physical and combustion characteristics of wood, the combustion characteristics of other diffuse porous wood species, with which the Tulip tree is affiliated were analyzed, and noticed that the characteristic correlates with the density and quantity of wood. The results of this study are expected to be used as basic information on the combustion characteristics of the Tulip tree.

굴참나무 생엽의 월별 연소특성에 관한 연구 (The Characteristics of Combustion for Living Leaves in Quercus variabilis with Monthly Seasonal Variations)

  • 박영주;오진열;이시영;이해평
    • 한국방재학회 논문집
    • /
    • 제10권3호
    • /
    • pp.85-90
    • /
    • 2010
  • 본 연구에서는 우리나라 산림의 주요 분포 수종 가운데 참나무류의 대표 수종인 굴참나무의 생엽을 대상으로 월별(6월~10월) 연소특성을 고찰하였다. 함수율은 114%~155% 정도였으며, 10월의 생엽은 수분함유량과 무염착화온도가 가장 낮은 것으로 나타났다. 7월 생엽은 27s 정도의 가장 빠른 시간에 발염착화 되었으며, 9월의 생엽은 105s 정도로 가장 오랜 시간동안 화염이 지속되고 총열방출량도 가장 높은 것으로 나타났다. 총열방출량과 총연기방출량은 모두 월별로 차이를 보였는데 6월부터 10월까지 점차 증가하는 경향을 나타냈다. 최대연기밀도는 10월의 생엽이 약간 높은 것으로 나타났지만 월별 차이는 거의 없었으며, 7월의 생엽은 다른 생엽들보다 상대적으로 빠른 시간인 795s에 최대값에 도달하는 것으로 나타났다.