• 제목/요약/키워드: Total harmonic distortion improvement

검색결과 37건 처리시간 0.028초

계통연계 인버터를 위한 새로운 고조파 보상법 (A Novel Harmonic Compensation Technique for the Grid-Connected Inverters)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.71-73
    • /
    • 2019
  • The output current of the Grid Connected Inverter (GCI) can be polluted with harmonics mainly due to i) dead time in switches, ii) non-linearity of switches, iii) grid harmonics, and iv) DC link fluctuation. Therefore, it is essential to design the robust Harmonic Compensation (HC) technique for the improvement of output current quality and fulfill the IEEE 1547 Total harmonics Distortion (THD) limit i.e. <5%. The conventional harmonic techniques often are complex in implementation due to their i) additional hardware needs, ii) complex structure, iii) difficulty in tuning of parameters, iv) current controller compatibility issues, and v) higher computational burden. In this paper, to eliminate the harmonics from the GCI output current, a novel Digital Lock-In Amplifier (DLA) based harmonic detection is proposed. The advantage of DLA is that it extracts the harmonic information accurately, which is further compensated by means of PI controller in feed forward manner. Moreover, the proposed HC method does not require additional hardware and it works with any current controller reference frame. To show the effectiveness of the proposed HC method a 5kW GCI prototype built in laboratory. The output current THD is achieved less than 5% even with 10% load, which is verified by simulation and experiment.

  • PDF

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.

새로운 정류방식을 이용한 전기추진선박의 고조파 저감 (Harmonic Reduction of Electric Propulsion Ship using New Rectification Scheme)

  • 김종수;최재혁;윤경국;서동환
    • 한국정보통신학회논문지
    • /
    • 제16권10호
    • /
    • pp.2230-2236
    • /
    • 2012
  • 현재 대형선박에서 다이오드 정류기를 이용한 AC-DC 전력변환장치를 주로 사용하고 있으며 이는 총고조파왜형율을 줄이기 위하여 다중펄스를 출력할 수 있는 상치환변압기가 추가적으로 설치되어야 한다. 이 경우 상치환변압기의 설치로 인해 공간적, 경제적 손실이 발생한다. 본 논문에서는 LNG 운반선 등과 같은 대형선박에서 현재 운용중인 다이오드 정류기를 대신하여 SCR, IGBT등의 소자를 이용하는 새로운 능동형 정류방식을 제안하여 저전압 전원의 이용이 가능하고 전력선 부하에 의해 발생하는 고조파 발생을 줄이며 또한, 기존의 방식에서 사용하는 상치환변압기를 제거하여 경제적인 이점도 얻고자 하였다. 현재 대형선박에서 운용중인 전기추진시스템에 제안한 시스템을 시뮬레이션 한 결과, 추진전동기 입력 전류 및 전압 파형에 포함된 총고조파왜형율이 개선됨을 나타내었다.

불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법 (Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load)

  • 이우종;조종민;차한주
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

Harmonic Mitigation and Power Factor Improvement using Fuzzy Logic and Neural Network Controlled Active Power Filter

  • Kumar, V.Suresh;Kavitha, D.;Kalaiselvi, K.;Kannan, P. S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.520-527
    • /
    • 2008
  • This work focuses on the evaluation of active power filter which is controlled by fuzzy logic and neural network based controller for harmonic mitigation and power factor enhancement. The APF consists of a variable DC voltage source and a DC/AC inverter. The task of an APF is to make the line current waveform as close as possible to a sinusoid in phase with the line voltage by injecting the compensation current. The compensation current is estimated using adaptive neural network. Using the estimated current, the proposed APF is controlled using neural network and fuzzy logic. Computer simulations of the proposed APF are performed using MATLAB. The results show that the proposed techniques for the evaluation of APF can reduce the total harmonic distortion less than 3% and improve the power factor of the system to almost unity.

Voltage Quality Improvement with Neural Network-Based Interline Dynamic Voltage Restorer

  • Aali, Seyedreza;Nazarpour, Daryoush
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.769-775
    • /
    • 2011
  • Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are used to improve the power quality in distribution systems. These devices require real power to compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as improvement of dynamic performance. Three multilayer perceptron neural networks are used to identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains this type of network. The proposed controller provides optimal mitigation of voltage dynamic. Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast response with lower total harmonic distortion.

파형개선을 위한 방전등 안정기 개발 (Development of discharge lamp ballast for wave improvement)

  • 이오걸;송달섭;김태우;이준탁;송호신;김종기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.85-88
    • /
    • 2000
  • This paper was development a discharge lamp ballast in order to wave improvement of high power factor and high efficiency. The discharge lamp ballast consists of a power factor correction circuit and a correction circuit on switching frequency of inverter. Instead of passive power factor circuit, active power factor circuit is adopted. Because it has the advantage of size, weight, total harmonic distortion, out DC voltage regulation, and power factor. The power factor circuit with MG34262 is controlled by variable frequency discontinuous mode. Results experiments, discharge lamp ballast is showed to have excellent for the proposed electronic ballast's operation and characteristics.

  • PDF

AC-DC Zeta Converter for Power Quality Improvement in Direct Torque Controlled PMSM Drive

  • Singh Bhim;Singh B.P.;Dwivedi Sanjeet
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.146-162
    • /
    • 2006
  • This paper deals with the analysis, design and implementation of an AC-DC Zeta converter in discontinuous current mode (DCM) of operation used for power quality improvement at AC mains in direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drives. The designed Zeta converter feeds a direct torque controlled PMSM drive system. Modeling and simulation is carried out in a standard PSIM software environment. Test results are obtained on the developed prototype Zeta converter using DSP ADMC401. The results obtained demonstrate the effectiveness of the Zeta converter in improving power quality at AC mains in the PMSM drive system.

평균전류모드 플라이백 토폴로지를 이용한 PDP용 고효율 AC-DC 컨버터 및 Hold-up 특성 개선 (High Efficiency AC-DC Converter Using Average-Current Mode Flyback Topology for PDP and Improvement of Hold-up Characteristic)

  • 이경인;임승범;정용민;오은태;이준영
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.23-27
    • /
    • 2008
  • Recently, regulation for THD (Total Harmonic Distortion) such as IEC 61000-3-2, IEEE 519 is being reinforced about a product which directly connects to AC line in order to prevent distortion of common power source in electronic equipment and electrical machinery. In order to satisfy these regulations, conventional circuits were used two-stage structure attached power factor correction circuit at ahead of converter but this method complicate the circuit and then a number of element increases thereupon the cost of production rises. in this paper, we propose a high efficiency single-stage 300W PFC fly-back converter that improved power factor and efficiency than conventional two-stage power module.

  • PDF