• Title/Summary/Keyword: Total graph of a commutative ring

Search Result 4, Processing Time 0.019 seconds

THE INDEPENDENCE AND INDEPENDENT DOMINATING NUMBERS OF THE TOTAL GRAPH OF A FINITE COMMUTATIVE RING

  • Abughazaleh, Baha';Abughneim, Omar AbedRabbu
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.969-975
    • /
    • 2022
  • Let R be a finite commutative ring with nonzero unity and let Z(R) be the zero divisors of R. The total graph of R is the graph whose vertices are the elements of R and two distinct vertices x, y ∈ R are adjacent if x + y ∈ Z(R). The total graph of a ring R is denoted by 𝜏(R). The independence number of the graph 𝜏(R) was found in [11]. In this paper, we again find the independence number of 𝜏(R) but in a different way. Also, we find the independent dominating number of 𝜏(R). Finally, we examine when the graph 𝜏(R) is well-covered.

THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

  • Abbasi, Ahmad;Habibi, Shokoofe
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.85-98
    • /
    • 2012
  • Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by T(${\Gamma}_I(R)$). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ${\in}$ R, the vertices x and y are adjacent if and only if x + y ${\in}$ S(I). The total graph of a commutative ring, that denoted by T(${\Gamma}(R)$), is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if x + y ${\in}$ Z(R) which is due to Anderson and Badawi [2]. In the case I = {0}, $T({\Gamma}_I(R))=T({\Gamma}(R))$; this is an important result on the definition.

THE TOTAL GRAPH OF NON-ZERO ANNIHILATING IDEALS OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.379-395
    • /
    • 2018
  • Assume that R is a commutative ring with non-zero identity which is not an integral domain. An ideal I of R is called an annihilating ideal if there exists a non-zero element $a{\in}R$ such that Ia = 0. S. Visweswaran and H. D. Patel associated a graph with the set of all non-zero annihilating ideals of R, denoted by ${\Omega}(R)$, as the graph with the vertex-set $A(R)^*$, the set of all non-zero annihilating ideals of R, and two distinct vertices I and J are adjacent if I + J is an annihilating ideal. In this paper, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[x])$. Also, we study the relations between the diameters of ${\Omega}(R)$ and ${\Omega}(R[[x]])$, whenever R is a Noetherian ring. In addition, we investigate the relations between the diameters of this graph and the zero-divisor graph. Moreover, we study some combinatorial properties of ${\Omega}(R)$ such as domination number and independence number. Furthermore, we study the complement of this graph.

THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS

  • Saraei, Fatemeh Esmaeili Khalil
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • Let M be a module over a commutative ring R, and let T(M) be its set of torsion elements. The total torsion element graph of M over R is the graph $T({\Gamma}(M))$ with vertices all elements of M, and two distinct vertices m and n are adjacent if and only if $m+n{\in}T(M)$. In this paper, we study the basic properties and possible structures of two (induced) subgraphs $Tor_0({\Gamma}(M))$ and $T_0({\Gamma}(M))$ of $T({\Gamma}(M))$, with vertices $T(M){\backslash}\{0\}$ and $M{\backslash}\{0\}$, respectively. The main purpose of this paper is to extend the definitions and some results given in [6] to a more general total torsion element graph case.