• Title/Summary/Keyword: Total expected cost function

Search Result 47, Processing Time 0.022 seconds

Optimum Safety Indices Based On Expected Total Cost Minimization (총기대비용 최소화원칙에 의한 최적신뢰성지수)

  • 이증빈;신형우;장석모
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.216-223
    • /
    • 1993
  • The safety factors of current standard code are considered to be not appropriate compared to design and construction practices, even this safety factors are not determined from probabilistic study but merely from experiences and practices. This study pripose the optimum safety indices based on expected total cost minimization using only three parameters, which are the level of the failure cost to the initial cost by improvement in safety, and the order of the initial cost function.

  • PDF

Determination of optimal flood using total expected cost function (총 기대비용함수를 이용한 최적설계홍수량 결정)

  • Kim, Sang Ug;Choi, Kwang Bae;Seo, Dong Il;Cheon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.287-287
    • /
    • 2022
  • 홍수빈도분석의 실용적 측면의 목적은 특정 재현기간에 대하여 발생 가능한 홍수량을 설계홍수량(design flood)으로 설정함으로써 댐, 제방, 배수시설, 하수관거 등의 치수기능을 가진 치수시설물이 설계홍수량 내에서 홍수로 인한 피해를 발생시키지 않도록 그 규모와 기능을 설계함에 있다. 특히 우리나라의 경우 유량자료의 부족으로 강우빈도분석을 수행하여 재현기간별 확률강우량을 먼저 산정하고 이를 강우-유출모형을 통해 확률홍수량으로 전환한 뒤 하천등급에 따른 재현기간 기준에 따라 설계홍수량을 산정하고 있다. 그러나 이와 같이 결정된 설계홍수량이 특정유역에서 발생될 수 있는 피해규모에 대해 얼마나 적정한 지의 여부를 과학적으로 판단하기 위한 연구는 국내·외에서 찾아보기 어려우며, 이러한 문제를 개선하기 위한 기초 이론을 제공하는 것이 본 연구의 가장 중요한 목표이다. 홍수빈도분석을 통해 산정된 설계홍수량의 적정성 여부를 과학적으로 판단하기 위해 최근에 진행된 해외의 몇몇 연구에서는 총 기대비용함수(total expected cost function)의 개발에 근거한 최적설계홍수량을 활용할 수 있음을 제안한 바 있다. 이 개념은 계획된 설계홍수량 이상에서 발생될 수 있는 피해함수(damage function) 및 기대피해함수(expected damage function)와 비용함수(cost function)가 결정되면, 이로부터 총 비용을 나타내는 총 기대비용함수(total expected cost function)을 도출하고 총 기대비용함수가 최소가 되는 최적설계홍수량(optimal design flood)을 산정하여 이를 계획된 설계홍수량(tentative design flood) 비교함으로써 계획된 설계홍수량의 적정성을 판단하는 과정을 기초이론으로 활용한다. 본 연구에서는 불확실성으로 발생되는 범위를 고려한 최적설계홍수량을 산정하기 위하여 Metropolis-Hastings 알고리즘을 사용하였으며, 자료의 종류에 따른 홍수량의 변화를 분석하기 위하여 년최대계열 및 부분시계열 자료를 각각 적용하였다. 한강유역에서 가평대성, 여주 및 한강대교 수위표 지점에서 측정된 자동관측유량장치에 의한 홍수량 자료를 활용하였으며, 최적설계홍수량이 기존 설계홍수량에 비해 크게 산정됨을 알 수 있었다.

  • PDF

A System Analysis of a Controllable Queueing Model Operating under the {T:Min(T,N)} Policy (조정가능한 대기모형에 {T:Min(T,N)} 운용방침이 적용되었을 때의 시스템분석)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • A steady-state controllable M/G/1 queueing model operating under the {T:Min(T,N)} policy is considered where the {T:Min(T,N)} policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or after T time units elapsed without a customer' arrival, the time instant when Nth customer arrives at the system or T time units elapsed with at least one customer arrives at the system whichever comes first. After deriving the necessary system characteristics including the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time for the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers' waiting cost in the system and the server's removal and activating cost are defined. Then, procedures to determine the optimal values of the decision variables included in the operating policy are provided based on minimizing the total expected cost function per unit time to operate the queueing system under considerations.

Life Cycle Cost Analysis Models for Bridge Structures using Artificial Intelligence Technologies (인공지능기술을 이용한 교량구조물의 생애주기비용분석 모델)

  • Ahn, Young-Ki;Im, Jung-Soon;Lee, Cheung-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2002
  • This study is intended to propose a systematic procedure for the development of the conditional assessment based on the safety of structures and the cost effective performance criteria for designing and upgrading of bridge structures. As a result, a set of cost function models for a life cycle cost analysis of bridge structures is proposed and thus the expected total life cycle costs (ETLCC) including initial (design, testing and construction) costs and direct/indirect damage costs considering repair and replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses costs. Also, the optimum safety indices are presented based on the expected total cost minimization function using only three parameters of the failure cost to the initial cost (${\tau}$), the extent of increased initial cost by improvement of safety (${\nu}$) and the order of an initial cost function (n). Through the enough numerical invetigations, we can positively conclude that the proposed optimum design procedure for bridge structures based on the ETLCC will lead to more rational, economical and safer design.

Analysis of a Controllable M/G/1 Queueing Model Operating under the (TN) Policy ((TN) 운용방침이 적용되는 조정가능한 M/G/1 대기모형 분석)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A steady-state controllable M/G/1 queueing model operating under the (TN) policy is considered where the (TN) policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or the time instant when Nth customer arrives at the system after T time units elapsed without customers' arrivals during that time period. After deriving the necessary system characteristics such as the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time in the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers' waiting cost in the system and the server's removal and activating cost are defined. Then, the optimal values of the decision variables included in the operating policies are determined by minimizing the total expected cost function per unit time to operate the system under consideration.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

Extended warranty policy when minimal repair cost is a function of failure time (최소수리비용이 고장시간의 함수일 때 연장된 보증 정책)

  • Jung, Ki Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1195-1202
    • /
    • 2012
  • In this paper, we determine the expected total cost from the user's perspective for the replacement model with the extended warranty when minimal repair cost is a function of failure time. To do so, we define the extended warranty and assume the replacement model following the expiration of extended warranty from the user's perspective. Especially, we propose the criterion to buy the extended warranty and the numerical examples are presented to illustrate the purpose when the failure time of the system has a Weibull distribution.

Risk-averse Inventory Model under Fluctuating Purchase Prices (구매가격 변동시 위험을 고려한 재고모형)

  • Yoo, Seuck-Cheun;Park, Chan-Kyoo;Jung, Uk
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.4
    • /
    • pp.33-53
    • /
    • 2010
  • When purchase prices of a raw material fluctuate over time, the total purchasing cost is mainly affected by reordering time. Existing researches focus on deciding the right time when the demand for each period is replenished at the lowest cost. However, the decision is based on expected future prices which usually turn out to include some error. This discrepancy between expected prices and actual prices deteriorates the performance of inventory models dealing with fluctuating purchase prices. In this paper, we propose a new inventory model which incorporates not only cost but also risk into making up a replenishment schedule to meet each period's demand. For each replenishment schedule, the risk is defined to be the variance of its total cost. By introducing the risk into the objective function, the variability of the total cost can be mitigated, and eventually more stable replenishment schedule will be obtained. According to experimental results from crude oil inventory management, the proposed model showed better performance over other models in respect of variability and cost.

Decision of Producer's Specification Limits Considering Types of Loss Function (손실함수의 형태를 고려한 생산자 규격한계의 결정)

  • Kim, Dong-Hyuk;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • Taguchi regarded the concept of quality as 'total loss to society due to fluctuations in quality characteristics from the time of supplied to the customer.' The loss function is a representative tool that can quantitatively convert the loss that occurs due to the deviation of the quality characteristic value from the target value. This has been utilized in various studies with the advantage that it can change the social loss caused by fluctuation of quality characteristics to economic cost. The loss function has also been used extensively in the study of producer specification limits. However, in previous studies, only the second order loss function of Taguchi is used. Therefore, various types of losses that can occur in the process can't be considered. In this study, we divide the types of losses that can occur in the process considering the first and second loss functions and the Spiring's reflected normal loss function, and perform total inspection before delivering the customer to determine the optimal producer specification limit that minimizes the total cost. Also, we will divide the quality policy for the products beyond the specification limits into two. In addition, we will show the illustration of expected loss cost change of each model according to the change of major condition such as customer specifications and maximum loss cost.

Selection of target for the minimum expected loss in plating processes (도금공정에서 최소기대손실을 위한 목표치의 설정)

  • Park, Chang-soon;Kim, Jung-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1051-1060
    • /
    • 2010
  • In the plating process of the IC chips for the printed circuit board manufacturing, specification limits for the plating thickness are usually given but its target is not specified in most cases. When the target is not specified, the center point of the specification limits is used instead. When the process capability is large, however, the use of the center point for the target is not the best choice in the context of the total cost. In this paper, the total cost is defined in terms of the production cost and the loss function, and then the optimal choice for target is studied in order to minimize the expected loss. As a consequence, the optimal choice of the target reduces the expected loss significantly, while reducing the process capability slightly.