• 제목/요약/키워드: Total deformation

검색결과 633건 처리시간 0.032초

삼각가열에 의한 판 변형의 시뮬레이션 (Simulation of Plate Deformation by Triangle Heating Process)

  • 장창두;고대은;문성춘;서용록
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.66-74
    • /
    • 2001
  • 선체 외판 제작을 위한 곡가공은 조선에 있어서 필수적인 공정이다. 프레스를 이용한 냉간가공과 가스토치를 이용한 열간가공이 주를 이루는데, 특히 숙련된 기능공의 작업 경험에 전적으로 의존하는 열간가공 공정에 대한 자동화 요구가 증대되어 국내외적으로 많은 연구가 진행되고 있다. 본 연구는 향후 삼각가열에 대한 효율적인 변형해석 기법을 개발하기 위한 기초 연구로서 삼각가열에 의한 판의 변형특성과 그 주요인자를 파악하고자 하였다. 실제 조선소에서 현장조건 그대로 Jang 등(2001)이 실시한 일련의 삼각가열 실험 결과를 토대로 열탄소성 해석을 위한 수치해석 모델을 개발하고 상용 구조해석 프로그램인 ANSYS를 이용하여 삼각가열에 의한 판의 변형을 시뮬레이션하였다. 또한, 총 투입 열량이 같은 경우 선상가열과 삼각가열에 의한 변형 양상을 비교하여 각 가열법에 따른 변형 특성을 보다 명확히 하였다. 마지막으로, 단위부피당 투입열량에 따른 각 변형 성분의 변화 특성을 살펴보았다.

  • PDF

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • 접착 및 계면
    • /
    • 제5권2호
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

비등방경화 구성모델을 이용한 대변형 해석 : I. 정식화 (Large Deformation Analysis Using and Anistropic Hardening Constitutive Model : I. Formulation)

  • 오세붕
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.207-214
    • /
    • 2002
  • 미소변형에서 대변형에 이르는 전체 변형도 영역의 구성모델을 ABAQUS 코드에 구현하였다. 구성모델은 비등방경화규칙에 근거한 전응력 개념의 탄소성 모델이다. 사용된 정식화 및 알고리즘은 (1) Jaumann 응력속도를 이용한 대변형도 조건 정식화 (2) 내재적 인 응력적분 (3) 일관된 접선계수를 포함하고 있다. 이를 통하여 비등방경화 구성관계를 적용한 대변형 해석을 정확하고 효율적으로 수행할 수 있는 토대를 구축하였다. 동반논문(전병곤 등, 2002)에서는 예제해석을 통하여 새로운 구성모델과 ABAQUS 코드를 이용한 대변형 해석결과를 기술하였다.

An empirical formulation to predict maximum deformation of blast wall under explosion

  • Kim, Do Kyun;Ng, William Chin Kuan;Hwang, Oeju
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.237-245
    • /
    • 2018
  • This study proposes an empirical formulation to predict the maximum deformation of offshore blast wall structure that is subjected to impact loading caused by hydrocarbon explosion. The blast wall model is assumed to be supported by a simply-supported boundary condition and corrugated panel is modelled. In total, 1,620 cases of LS-DYNA simulations were conducted to predict the maximum deformation of blast wall, and they were then used as input data for the development of the empirical formulation by regression analysis. Stainless steel was employed as materials and the strain rate effect was also taken into account. For the development of empirical formulation, a wide range of parametric studies were conducted by considering the main design parameters for corrugated panel, such as geometric properties (corrugation angle, breadth, height and thickness) and load profiles (peak pressure and time). In the case of the blast profile, idealised triangular shape is assumed. It is expected that the obtained empirical formulation will be useful for structural designers to predict maximum deformation of blast wall installed in offshore topside structures in the early design stage.

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.

비측정용 디지털 카메라를 이용한 철도교량의 3차원 변형해석 기법개발 (The Technique Development for 3D Deformation Analysis of Railroad Bridge Using the Non-metric Camera)

  • 이효성;안기원;박병욱;신석효
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.129-131
    • /
    • 2010
  • 본 연구에서는 고해상도의 비측정용 디지털 카메라를 이용하여 강구조 철도교량의 3차원 변형량을 측정하고자 하였다. 변형량 측정은 현장관측 시간을 단축하고, 작업의 효율을 높이기 위해 공면조건에 의한 상호표정 방법(기준 타겟점의 3차원 측량이 필요 없다)을 적용하고자 한다. 이 방법으로 측정한 변형량을 토털스테이션을 이용하여 기준점의 3차원 측량으로 구한 외부표정요소로부터 획득한 변형량과 비교하여, 적용방법의 정확도를 확인하고자 한다.

  • PDF

A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates

  • Fahsi, Asmaa;Tounsi, Abdelouahed;Hebali, Habib;Chikh, Abdelbaki;Adda Bedia, E.A.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.385-410
    • /
    • 2017
  • This work presents a simple and refined nth-order shear deformation theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on elastic foundation. The proposed refined nth-order shear deformation theory has a new displacement field which includes undetermined integral terms and contains only four unknowns. Governing equations are obtained from the principle of minimum total potential energy. A Navier type analytical solution methodology is also presented for simply supported FG plates resting on elastic foundation which predicts accurate solution. The accuracy of the present model is checked by comparing the computed results with those obtained by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed theory can achieve the same accuracy of the existing HSDTs which have more number of variables.

Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM

  • Madenci, Emrah
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.493-509
    • /
    • 2021
  • There is not enough mixed finite element method (MFEM) model developed for static and dynamic analysis of functionally graded material (FGM) beams in the literature. The main purpose of this study is to develop a reliable and efficient computational modeling using an efficient functional in MFEM for free vibration and static analysis of FGM composite beams subject to high order shear deformation effects. The modeling of material properties was performed using mixture rule and Mori-Tanaka scheme which are more realistic determination techniques. This method based on the assumption that a two phase composite material consisting of matrix reinforced by spherical particles, randomly distributed in the beam. To explain the displacement components of the shear deformation effects, it was accepted that the shear deformation effects change sinusoidal. Partial differential field equations were obtained with the help of variational methods and then these equations were transformed into a novel functional for FGM beams with the help of Gateaux differential derivative operator. Thanks to the Gateaux differential method, the compatibility of the field equations was checked, and the field equations and boundary conditions were reflected to the function. A MFEM model was developed with a total of 10 degrees of freedom to apply the obtained functional. In the numerical applications section, free vibration and flexure problems solutions of FGM composite beams were compared with those predicted by other theories to show the effects of shear deformation, thickness changing and boundary conditions.

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

Analysis of Reduction Factors to Creep Deformation of Reinforced Geosynthetics

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.104-104
    • /
    • 2003
  • Geosynthetic Reinforcements - membrane drawn type, warp/knitted type, junction bonded type and composite type geogrids, strip type reinforcement - were used to compare the long-term perfor-mance by total factor of safety with reduction factors during service periods. To evaluate the reduction factors, wide-width tensile property, installation damage, creep deformation, chemical and biological degradation tests were performed. Long-term design strengths of geosynthetic reinforcements were calculated by using GRI standard Test Method GG4.

  • PDF