• Title/Summary/Keyword: Total body irradiation (TBI)

Search Result 39, Processing Time 0.026 seconds

Effects of total body irradiation-based conditioning on allogeneic stem cell transplantation for pediatric acute leukemia: a single-institution study

  • Park, Jongmoo;Choi, Eun Kyung;Kim, Jong Hoon;Lee, Sang-Wook;Song, Si Yeol;Yoon, Sang Min;Kim, Young Seok;Kim, Su Ssan;Park, Jin-Hong;Park, Jaehyeon;Ahn, Seung Do
    • Radiation Oncology Journal
    • /
    • v.32 no.3
    • /
    • pp.198-207
    • /
    • 2014
  • Purpose: To evaluate the effects of total body irradiation (TBI), as a conditioning regimen prior to allogeneic stem cell transplantation (allo-SCT), in pediatric acute leukemia patients. Materials and Methods: From January 2001 to December 2011, 28 patients, aged less than 18 years, were treated with TBI-based conditioning for allo-SCT in our institution. Of the 28 patients, 21 patients were diagnosed with acute lymphoblastic leukemia (ALL, 75%) and 7 were diagnosed with acute myeloid leukemia (AML, 25%). TBI was completed 4 days or 1 day before stem cell infusion. Patients underwent radiation therapy with bilateral parallel opposing fields and 6-MV X-rays. The Kaplan-Meier method was used to calculate survival outcomes. Results: The 2-year event-free survival and overall survival rates were 66% and 56%, respectively (71.4% and 60.0% in AML patients vs. 64.3% and 52.4% in ALL patients, respectively). Treatment related mortality rate were 25%. Acute and chronic graft-versus-host disease was a major complication; other complications included endocrine dysfunction and pulmonary complications. Common complications from TBI were nausea (89%) and cataracts (7.1%). Conclusion: The efficacy and toxicity data in this study of TBI-based conditioning to pediatric acute leukemia patients were comparable with previous studies. However, clinicians need to focus on the acute and chronic complications related to allo-SCT.

Beam Spoiler-dependent Total Body Irradiation Dose Assessment (전신방사선조사 시 선속 스포일러에 따른 선량 분포 및 영향 평가)

  • Lee, Dong-Yeon;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study examined the properties of photons and the dose distribution in a human body via a simulation where the total body irradiation(TBI) is performed on a pediatric anthropomorphic phantom and a child size water phantom. Based on this, we tried to find the optimal photon beam energy and material for beam spoiler. In this study, MCNPX (Ver. 2.5.0), a simulation program based on the Monte Carlo method, was used for the photon beam analysis and TBI simulation. Several different beam spoiler materials (plexiglass, copper, lead, aluminium) were used, and three different electron beam energies were used in the simulated accelerator to produce photon beams (6, 10, and 15 MeV). Moreover, both a water phantom for calculating the depth-dependent dosage and a pediatric anthropomorphic phantom for calculating the organ dosage were used. The homogeneity of photon beam was examined in different depths for the water phantom, which shows the 20%-40% difference for each material. Next, the org an doses on pediatric anthropomorphic phantom were examined, and the results showed that the average dose for each part of the body was skin 17.7 Gy, sexual gland 15.2 Gy, digestion 13.8 Gy, liver 11.8 Gy, kidney 9.2 Gy, lungs 6.2 Gy, and brain 4.6 Gy. Moreover, as for the organ doses according to materials, the highest dose was observed in lead while the lowest was observed in plexiglass. Plexiglass in current use is considered the most suitable material, and a 6 or 10 MV photon energy plan tailored to the patient condition is considered more suitable than a higher energy plan.

Prediction of Midline Dose from Entrance and Exit Dose Using OSLD Measurements for Total Body Irradiation

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Background: This study aims to predict the midline dose based on the entrance and exit doses from optically stimulated luminescence detector (OSLD) measurements for total body irradiation (TBI). Materials and Methods: For TBI treatment, beam data sets were measured for 6 MV and 15 MV beams. To evaluate the tissue lateral effect of various thicknesses, the midline dose and peak dose were measured using a solid water phantom (SWP) and ion chamber. The entrance and exit doses were measured using OSLDs. OSLDs were attached onto the central beam axis at the entrance and exit surfaces of the phantom. The predicted midline dose was evaluated as the sum of the entrance and exit doses by OSLD measurement. The ratio of the entrance dose to the exit dose was evaluated at various thicknesses. Results and Discussion: The ratio of the peak dose to the midline dose was 1.12 for a 30 cm thick SWP at both energies. When the patient thickness is greater than 30 cm, the 15 MV should be used to ensure dose homogeneity. The ratio of the entrance dose to the exit dose was less than 1.0 for thicknesses of less than 30 cm and 40 cm at 6 MV and 15 MV, respectively. Therefore, the predicted midline dose can be underestimated for thinner body. At 15 MV, the ratios were approximately 1.06 for a thickness of 50 cm. In cases where adult patients are treated with the 15 MV photon beam, it is possible for the predicted midline dose to be overestimated for parts of the body with a thickness of 50 cm or greater. Conclusion: The predicted midline dose and OSLD-measured midline dose depend on the phantom thickness. For in-vivo dosimetry of TBI, the measurement dose should be corrected in order to accurately predict the midline dose.

Effects of Single Total Body Irradiation (TBI) on the Peripheral Blood of Piglets (돼지에서 단일 전신 방사선 조사 용량에 따른 혈액변화 관찰)

  • Lee, Jae-Hoon;Kang, Eun-Hee;Chung, Dai-Jung;Kim, Dong-Ku;Kim, Jae-Hwan;Shin, Hyun-Soo;Ahn, Jung-Yong;Park, Jin-Ki;Chang, Won-Kyong;Choi, Chi-Bong;Kim, Hwi-Yool
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1654-1659
    • /
    • 2007
  • We examined total body irradiation (TBI)-induced effects by complete blood count (CBC) and fluorescence-activated cell sorter analysis (FACS) in the piglet following radiation irritation. A CBC included red blood cell count, white blood cell count, and platelet cell count. Four piglets were examined in this study and each piglet was divided by irradiation dose, two piglets with 4 Gy, two with 6 Gy, one with 8 Gy. All piglets showed leukopenia, thrombocytopenia after irradiation. In 6 and 8 Gy group, three piglets showed severe hemostatic disorder and gastrointestinal disorder suchas diarrhea and anorexia, and they died between 10 and 15 days after radiation irritation. In 4 Gy, two piglets showed no clinical sign after radiation injury, but persistent leukopenia was shown in blood examination. We suggest that a single TBI dose less than 6 Gy is adequate for conditioning piglet for bone marrow transplantation.

Factors associated with pulmonary toxicity after myeloablative conditioning using fractionated total body irradiation

  • Byun, Hwa Kyung;Yoon, Hong In;Cho, Jaeho;Kim, Hyun Ju;Min, Yoo Hong;Lyu, Chuhl Joo;Cheong, June-Won;Kim, Jin Seok;Kim, Hyo Sun;Kim, Soo-Jeong;Yang, Andrew Jihoon;Lee, Byung Min;Lee, Won Hee;Lee, Joongyo;Ahn, Ki Jung;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.35 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Purpose: Pulmonary toxicities, including infectious pneumonia (IP) and idiopathic pneumonia syndrome (IPS), are serious side effects of total body irradiation (TBI) used for myeloablative conditioning. This study aimed to evaluate clinical factors associated with IP and IPS following TBI. Materials and Methods: Fifty-eight patients with hematologic malignancies who underwent TBI before allogeneic hematopoietic stem cell transplantation between 2005 and 2014 were reviewed. Most patients (91%) received 12 Gy in 1.5 Gy fractions twice a day. Pulmonary toxicities were diagnosed based on either radiographic evidence or reduced pulmonary function, and were subdivided into IP and IPS based on the presence or absence of concurrent infection. Results: Pulmonary toxicities developed in 36 patients (62%); 16 (28%) had IP and 20 (34%) had IPS. IP was significantly associated with increased treatment-related mortality (p = 0.028) and decreased survival (p = 0.039). Multivariate analysis revealed that the risk of developing IPS was significantly higher in patients who received stem cells from a matched unrelated donor than from a matched sibling donor (p = 0.021; hazard ratio [HR] = 12.67; 95% confidence interval [CI], 1.46-110.30). Combining other conditioning agents with cyclophosphamide produced a higher tendency to develop IP (p = 0.064; HR = 6.19; 95% CI, 0.90-42.56). Conclusion: IP and IPS involve different risk factors and distinct pathogeneses that should be considered when planning treatments before and after TBI.

Vitamin E Modulates Radiation-induced Oxidative Damage in Mice Fed a High-Lipid Diet

  • Shin, Sung-Jae
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.190-195
    • /
    • 2003
  • The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the +VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility.

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

A Study on the Effectiveness of the Manufacture of Compensator and Setup Position for Total Body Irradiation Using Computed Tomography-simulator's Images (전산화 단층 모의치료기(Computed Tomography Simulator)의 영상을 이용한 TBI(Total Body Irradiation) 자세 잡이 및 보상체 제작의 유용성에 관한 고찰)

  • Lee Woo-Suk;Park Seong-Ho;Yun In-Ha;Back Geum-Mun;Kim Jeong-Man;Kim Dae-Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Purpose : We should use a computed tomography-simulator for the body measure and compensator manufacture process was practiced with TBI's positioning in process and to estimate the availability.,Materials and Methods : Patient took position that lied down. and got picture through computed tomography-simulator. This picture transmitted to Somavision and measured about body measure point on the picture. Measurement was done with skin, and used the image to use measure the image about lungs. We decided thickness of compensator through value that was measured by the image. Also, We decided and confirmed position of compensator through image. Finally, We measured dosage with TLD in the treatment department.,Results : About thickness at body measure point. we could find difference of $1{\sim}2$ cm relationship general measure and image measure. General measure and image measure of body length was seen difference of $3{\sim}4$ cm. Also, we could paint first drawing of compensator through the image. The value of dose measurement used TLD on head, neck, axilla, chest(lungs inclusion), knee region were measured by $92{\sim}98%$ and abdomen, pelvis, inquinal region, feet region were measured by $102{\sim}109%$.,Conclusion : It was useful for TBI's positioning to use an image of computed tomography-simulator in the process. There was not that is difference of body thickness measure point, but measure about length was achieved definitely. Like this, manufacture of various compensator that consider body density if use image is available. Positioning of compensator could be done exactly. and produce easily without shape of compensator is courted Positioning in the treatment department could shortened overall $15\{sim}20$ minute time. and reduce compensator manufacture time about 15 minutes.

  • PDF

Development of Total Body Irradiation Program (전신방사선조사 프로그램 개발)

  • Choi Byung Ock;Jang Ji Sun;Kang Young Nam;Choi Ihl Bohng;Shin Sung Kyun
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.130-137
    • /
    • 2005
  • In total body irradiation (T81) for leukemia, we have a two methode. One is a AP (anterior-posterior) method and the other is a Lateral methode. Our hospital used lateral methode. T81 must consider about body contour, because of homogeneous dose distribution. For compensation about irregular body contour, we use compensator. For T81 treatment, we must be considered, accurate manufacture of compensator and accurate calculation of dose. We developed the automatic program for T81. This program accomplished for compensator design and dose calculation for irregular body. This program was developed for uses to use in a windows environment using the IDL language. In this program, it use energy data for each energy: TMR, output factor, inverse square law, spoiler, field size factor. This program reduces the error to happen due to the manual. As a development of program, we could decrease the time of treatment plan and care the patient accurately.

  • PDF

Dose Evaluation of Childhood Leukemia in Total Body Irradiation (소아백혈병의 전신방사선조사시 선량평가)

  • Lee, Dongyeon;Ko, Seongjin;Kang, Sesik;Kim, Changsoo;Kim, Donghyun;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.259-264
    • /
    • 2013
  • Total body irradiation in the treatment of childhood leukemia, which is one of the pre-treatment with stem cell transplantation is being used, the current organization using compensators are treated. However, under the terms of the compensator organization long-term impact on the human body, it is difficult to assess directly. In this study, we use the mathematical simulation of radiation exposures body energy and the distance to the crew and the patient (source surface distance, SSD), and patients with tissue compensators change of the distance along the body of the organ doses were evaluated. As a result, the surface dose of energy 4 MV, SSD 280 cm, tissue compensators and the patient when the distance 30 cm 5.84 G / min showed the highest levels. In addition, patients with tissue compensators and the distance apart when 30 cm TBI represents the ideal dose distribution was found.