• Title/Summary/Keyword: Total annual cost

Search Result 238, Processing Time 0.037 seconds

Determination of sample size to serological surveillance plan for pullorum disease and fowl typhoid (추백리-가금티푸스의 혈청학적 모니터링 계획수립을 위한 표본크기)

  • Pak, Son-Il;Park, Choi-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.4
    • /
    • pp.457-462
    • /
    • 2008
  • The objective of this study was to determine appropriate sample size that simulated different assumptions for diagnostic test characteristics and true prevalences when designing serological surveillance plan for pullorum disease and fowl typhoid in domestic poultry production. The number of flocks and total number of chickens to be sampled was obtained to provide 95% confidence of detecting at least one infected flock, taking imperfect diagnostic tests into account. Due to lack of reliable data, within infected flock prevalence (WFP) was assumed to follow minimum 1%, most likely 5% and maximum 9% and true flock prevalence of 0.1%, 0.5% and 1% in order. Sensitivity were modeled using the Pert distribution: minimum 75%, most likely 80% and maximum 90% for plate agglutination test and 80%, 85%, and 90% for ELISA test. Similarly, the specificity was modeled 85%, 90%, 95% for plate agglutination test and 90%, 95%, 99% for ELISA test. In accordance with the current regulation, flock-level test characteristics calculated assuming that 30 samples are taken from per flock. The model showed that the current 112,000 annual number of testing plan which is based on random selection of flocks is far beyond the sample size estimated in this study. The sample size was further reduced with increased sensitivity and specificity of the test and decreased WFP. The effect of increasing samples per flock on total sample size to be sampled and optimal combination of sensitivity and specificity of the test for the purpose of the surveillance is discussed regarding cost.

A Case Survey and Analysis of Complex with Theme of Green Care and Healing (치유테마단지 사례조사 분석)

  • Koo, Hee-Dong;Kim, Dae-Sik;Lee, Han-Jun;Lim, Hye-Ji
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.153-164
    • /
    • 2016
  • Developed countries in agriculture like Netherlands, Belgium and England, have managed Green Care policy and project during the last decades. The needs in Green Care is also increasing as new growth power in rural area of Korea. This study investigated sites which are already operating as complex with Green Care theme. This study surveyed the operating conditions like type, scale, location pattern, purpose, customer and finance for cases of the complex. The period of the survey is from 2015. 8. 11 to 2015. 09. 10 for the 24 activated cases in aspect of operation and management. Among the 24 cases, 16 cases were classified as Green Care Complex which facilities are aggregated a place, and the other 8 cases as Green Care Cluster which are distributed at several places. The analysis result showed that there were apparent distinction among cases in total budget, costs of construction, capacity for guest, and the total number of annual visitors. Despite of the type and scale the accommodation cost, the number of workers, and amount of sales have small deviation in distribution of values, although the cases have various type of contents and scale of space. The result of this study can be used as data of bench marking to develop the Green Care Complex or Cluster in rural area.

A Study on the Development of Optimal Renewal Planning Model in Water Supply Facilities Connected to Future Financial Plan of Water Providers (수도사업자의 장래 재정계획과 연계한 상수도시설의 최적 개량계획 수립 모델 개발 연구)

  • Lim, Sanghyun;Shin, Hwisu;Seo, Jeewon;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.149-159
    • /
    • 2017
  • It is considered necessary to renewal a considerable number of water supply facilities in Korea because they began to be intensively buried in the period of rapid economic growth. Accordingly, local water providers are required to take measures against this situation, but they have currently been caught in a vicious circle of the lack of budget spent in renewing water supply facilities because county-based small-scale local water supply cannot afford to cover annual expenditures with their revenues from water rates. Therefore, this study developed an optimal renewal planning model capable of achieving a balance of financial revenue and expenditure in local water supply using nonlinear programming and furthermore of minimizing the total cost incurred during the analysis. To this end, this study selected the water supply area located in County Y as a research area to build the financial revenue and expenditure and used Solver function provided by Microsoft Excel to use nonlinear programming. As a result, this study developed an optimal renewal planning model minimizing incurred costs in consideration of 6 items in the financial revenue and expenditure. The optimal renewal plan was modeled according to the available annual budget. As a result, this study proposed SICD, a scenario to minimize total costs from the perspective of water suppliers, and SITS, a scenario to minimize the increase in water rates from the perspective of consumers. It can be said that the method proposed in this study is the core of the optimal financial and renewal plans as a final stage of asset management for water supply facilities. Therefore, it is considered possible for local water providers to use the method proposed in this study according to circumstances for the asset management of water supply facilities.

Environmental Improvement Effect and Social Benefit of Environmental Impact Assessment: Focusing on Thermal Power Plant (환경영향평가를 통한 화력발전소의 환경개선 효과와 사회적 편익)

  • Kang, Eugene;Kim, Yumi;Moon, Nankyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.322-333
    • /
    • 2018
  • This study was carried out to measure atmospheric environmental improvement effect and estimate its social benefit of thermal power plants through Environmental Impact Assessment (EIA) for quantitative analysis about operational performances of EIA. In this study, 'EIA outcome' is defined as whether or not the system is implemented, therefore, environmental standard to be followed by each project and consultation contents were compared. In total 60 cases of thermal power plant construction projects that have been consulted over the past 10 years since 2010, major air pollutants have been significantly reduced after the implementation of EIA. The $PM_{10}$ reduced annual 3,745 tons, $NO_2$ by 74,569 tons, and $SO_2$ by 37,647 tons, which were estimated at approximately 240 billion won~5 trillion 967 billion won per year for social benefit. This means the total cost of power plant operations will be cut to 7 trillion 192 billion won~178 trillion 994 billion won over a 30-year period. The reduced amount of air pollutants emitted by energy generation facilities across the country is worth 50%, and its economic value is larger than the annual Current Health Expenditure in Korea. This is meant by the fact that all projects are subject to uniform criteria under the existing relevant regulation, but that each project plans are optimized according to the characteristics of target areas and projects through the process of EIA.

Studies of Organic Forage Production System for Animal Production in Korea (한국의 가축 생산성 향상을 위한 유기조사료 생산체계에 관한 연구)

  • Kim, Jong-Duk;Kim, Jong-Kwan;Kwon, Chan-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.155-166
    • /
    • 2014
  • Organic forage production system is one of the most important aspects in organic livestock production. Animals in the organic farming system are also essential for manure to be used for organic forage production. Both organic forage and animals are essential to maintain the cycle of organic agriculture system. In this paper we introduce the organic forage production system in Korea. Summer and winter crops are getting popular in Korea because of their high forage yield and cultivation in double cropping systems. Common cropping system for forage production in Korea is the double cropping system with legume and grass mixture. Forage sorghum and sudangrass are the most popular ones of annual summer forage corps because of their high production with low cost in the double cropping systems. In the mixture of forage crops, inter cropping is more suitable in the corn and sorghum cropping system because of high lodging resistance and forage yield, and low weed population. Forage sorghum and sudangrass are difficult to preserve as direct-cut silage due to the fact that its high moisture content causes excessive fermentation during ensiling. Corn grain addition to sorghum silage could be recommended as the most effective treatment for increasing quality and reducing production cost. It is recommended that corn grain could be added up to 10% of total amount of silage. And agriculture by-products also can be added at the time of ensiling to minimize losses of effluent and have the additional advantage of increasing quality. Agriculture by-products as silage supplements increased DM content and quality, and decreased the production cost of sorghum silage. Field pre-wilting treatment of forage crops also increased DM content and quality of the silage. Wilting sorghum${\times}$sudangrass hybrid before ensiling was the effective method for reducing effluent and increasing pH and forage quality more than direct cut silage. Optimum prewilting period of sudangrass silage was 1 or 2 days. In organic forage, the most important factor is the enhancement of organic forage sufficiency in relation to the environmental-friendly and organic livestock. Consequently, there are many possibilities for animal production and organic forage production in Korea. No forages no cattle concept should be emphasized in organic farming system.

A Heuristic Model for Appropriation of Voyage Allocation under Specific Port Condition Using Regression Analyses - With a Case Analysis on POSCO-owned Port - (휴리스틱 회귀모델을 이용한 특정항만 조건하에서의 선형별 적정 항차배분에 관한 연구 - 포항제철(주) 전용항만 사례를 중심으로-)

  • Kim, Weonjae
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.3
    • /
    • pp.159-174
    • /
    • 2013
  • This paper mainly deals with the appropriation of ship voyage allocation, using a heuristic regression model, in order to reduce total costs incurred in port, yard and at sea under the specific port condition. Because of different behavior of costs incurred in port, yard and at sea, an effort to minimize these costs by adjusting the number of voyages for three ship classes(50,000, 100,000, and 150,000-ton) should be made. For instance, if the port managers attempt to reduce the sea transport cost by increasing the annual allocated number of ship voyages classed 150,000-ton for economies of scale, they have no choice but to suffer a significant increase in queueing cost due to port congestion. To put it differently, there are trade-off relationships among the costs incurred in port, yard, and at sea. We utilized a computer simulation result to perform a couple of regression analyses in order to figure out the appropriate range of allocated number of voyages of each ship class using a heuristic approach. The detailed analytical results will be shown at the main paper. We also suggested a net present value(NPV) model to make a proper investment decision for an additional berth of 200,000-ton class that alleviates port congestion and reduces transport cost incurred both in port and at sea.

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

Stochastic Programming Model for River Water Quality Management (추계학적 계획모형을 이용한 하천수질관리)

  • Cho, Jae Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.231-243
    • /
    • 1994
  • A stochastic programming model for river water quality management was developed. River water quality, river flow, quality and flowrate of the wastewater treatment plant inflow were treated as random variables in the model. Withdrawal for water supply and submerged weir reaeration were included in the model itself. A probabilistic model was formulated to compute the expectation and variance of water quality using Streeter-Phelps equation. Chance constraints of the optimization problem were converted to deterministic equivalents by chance constrained method. Objective function was total annual treatment cost of all wastewater treatment plants in the region. Construction cost function and O & M cost function were derived in the form of nonlinear equations that are functions of treatment efficiency and capacity of treatment plant. The optimization problem was solved by nonlinear programming. This model was applied to the lower Han River. The results show that the reliability to meet the DO standards of the year 1996 is about 50% when the treatment level of four wastewater treatment plants in Seoul is secondary treatment, and BOD load from the tributary inflows is the same as present time. And when BOD load from Tanchon, Jungrangchon, and Anyangchon is decreased to 50%, the reliability to meet the DO standards of the year 1996 is above 60%. This results indicated that for the sake of the water quality conservation of the lower Han River, water quality of the tributaries must be improved, and at least secondary level of treatment is required in the wastewater treatment plants.

  • PDF

Micro-Hydropower System with a Semi-Kaplan Turbine for Sewage Treatment Plant Application: Kiheung Respia Case Study (하수처리장 적용을 위한 Semi-카플란 수차가 장착된 마이크로수력발전 시스템: 기흥레스피아 사례)

  • Chae, Kyu-Jung;Kim, Dong-Soo;Cheon, Kyung-Ho;Kim, Won-Kyoung;Kim, Jung-Yeon;Lee, Chul-Hyung;Park, Wan-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.363-370
    • /
    • 2013
  • Small scale hydropower is one of most attractive and cost-effective energy technologies for installation within sewage treatment plants. This study was conducted to evaluate the potential of a semi-kaplan micro-hydropower (MHP) system for application to sewage treatment plants with high flow fluctuations and a low head. The semi-kaplan MHP is equipped with an adjustable runner blade, and is without a guide vane, so as to reduce the incidence of mechanical problems. A MHP rating 13.4 kWp with a semi-kaplan turbine has been considered for Kiheung Respia sewage treatment plant, and this installation is estimated to generate 86.8 MWh of electricity annually, which is enough to supply electricity to over 25 households, and equivalent to an annual reduction of 49 ton $CO_2$. The semi-kaplan turbine showed a 90.2% energy conversion efficiency at the design flow rate of 0.35 $m^3/s$ and net head of 4.7 m, and was adaptable to a wide range of flow fluctuations. Through the MHP operation, approximately 2.1% of total electricity demand of Kiheung Respia sewage treatment plant will be achievable. Based on financial analysis, an exploiting MHP is considered economically acceptable with an internal rate of return of 6.1%, net present value of 15,539,000 Korean Won, benefit-cost ratio of 1.08, and payback year of 15.5, respectively, if initial investment cost is 200,000,000 Korean Won.

Optimal Nursing Workforce and Financial Cost to Provide Comprehensive Nursing Service in the National Health Insurance System (국민건강보험 간호·간병통합서비스의 전면 도입을 위한 간호인력 및 재정비용 추계)

  • Kim, Jinhyun;Kim, Sung-jae;Lee, Eunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.119-128
    • /
    • 2017
  • This study estimated the optimal nursing workforce and financial costs of providing comprehensive nursing services at hospitals under the national health insurance system. Data on registered nurses, nursing aids, medical institutions, and number of patients were obtained from the Health Insurance Review and Assessment Service. The optimal size of the nursing workforce was calculated using the workload model. A bottom-up approach was used to estimate the annual total financial cost of comprehensive nursing services. The number of registered nurses and nursing aids would need to be increased by 81.75% and 83.23%, respectively, in order to fully apply comprehensive nursing care on a national scale. The additional financial costs for comprehensive nursing services at all hospitals was estimated to be as much as 110.39% of the current cost. For the comprehensive nursing service, nurses with a career and newcomers need to be retained at their hospitals, and the validity of the nurse-patient ratio should be continuously checked. The financial shock to the national health insurance system could be minimized by gradually extending the system to all hospitals.