• Title/Summary/Keyword: Total Thermal Resistance

Search Result 122, Processing Time 0.026 seconds

Studies on the Thermal Resistant Spore of Bacillus coagulance(Part I Sporulating Conditions of the Thermal Resistant spore) (Bacillus coagulance 의 내열성포자에 관한 연구 (제일보) 생육ㆍ내열성및 포자형성에 미치는 단양조건)

  • 유주현;최규봉;이정치;윤원영
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 1977
  • As a basic study for the application of the spore-tearing lactic acid bacteria to foods, the effects of the sporulating conditions on the growth and sporogenesis were studied were observed. The results obtained are as follow. 1. All carbohydrates added to sporulation media except dextrin decreased the sporulation rate and the thermal resistance of spores. Dextrin stimulated the growth, however, there in no effect on the thermal resistance. 2. As nitrogen source, the protein hydrolysates such as peptone, casamino acid were effective to obtain were spores of the increased thermal resistance. 3. Ca$\^$++/, Mn$\^$++/ of the metal ions added to casamino acid containing medium validly increased the total growth, sporulation rate and thermal resistance. Its optimum concentration was 40 ppm each. 4. Biotin of vitamines had an effect on the total growth, sporulation and thermal resistance of spores. Its optimum concentration was 30${\gamma}$/ml. 5. The resistant spores required the adequate maturation period, more than 36 hours, sufficient aeration. and optimum temperature, 37∼45$^{\circ}C$.

  • PDF

Thermal Properties on combination of Velvet and Lining (벨벳과 안감의 소재 조합에 따른 의복의 열저항에 관한 연구)

  • 계명대학교의류학과;이욱자;류덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.1
    • /
    • pp.3-13
    • /
    • 1999
  • This study was performed for purpose of getting fundamental information requisite to wear velvet clothes that is more comfortable for the human body and also the environment. It was carried out in a human wearing test and thermal manikin test at the same time in a controlled-condition chamber. The experimental environment had a ambient temperature of 15$\pm$0.5$^{\circ}C$ with the relative humidity at 5$^{\circ}C$$\pm$5% and with air velocity at less that than 0.2m/sec. Velvet differ from common plain weaves in thermal properties because it's constructed in two parts one is ground part and the other part is pile part. In order to investigate the thermal resistance of velvet eight different combination of 4 velvet kinds and 2 lings kinds as experimental clothes. [(4 velvet kinds : Acetate cuprammoium Rayon Cotton Wool) (2 lining kinds : acetate viscose rayon)longrightarrow8 combination: Aa, Av, Ra, Rv, Ca, Cv, Wa, Wv: the simplified character] The results of this study can be summarized as follows : 1. For the regional thermal resistance the differences in eight clothes as well as differences in each part were significant. As a whole the breast part showed the highest thermal resistance and the leg part was higher than the shank part. The rank of the total thermal resistance was put at Wa>Wv>Ca>Cv>Aa>Av>Ra>Rv in this order. 2. Considered clothing microclimate microclimate temperature has a similar tendency to the total thermal resistance. It showed a significance in the differences of eight clothes and each parts. the belly part was highest in every combination. On the other hand for clothing humidity there was a significance between back and breast part only in the human wearing test. 3. It was indicated that CLO value was highly positively correlated with the clothings' weight and showed a high negative correlation with the air permeability.

  • PDF

Effect of Thermal Contact Resistance on Transient Thermoelastic Contact for an Elastic Foundation (탄성기반에서 과도 열탄성 접촉에 대한 열 접촉 저항의 영향)

  • Jang Yong-Hoon;Lee Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.833-840
    • /
    • 2006
  • The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed, regardless of the thermal contact resistance. However the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady state, the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger numbers of small contact areas are established, unlit eventually the accuracy of the algorithm is limited by the discretization used.

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

A Study on the Thermal Characteristics of Comfortable Heat-Retaining Winter Clothing (겨울용 쾌적 보온성 의복의 온열특성에 관한 연구 - 무풍환경하에서 -)

  • Song, Min-Kyu;Kwon, Myoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.6
    • /
    • pp.24-34
    • /
    • 2008
  • The purpose of this study was to create a database of information on fabric factors(i.e., fabric insulation, fabric weight, clothing weight, fabric thickness, air permeability, and water vapor resistance) of clothing used for insulations, to compare them according to clothing types, and to estimate thermal resistance of clothing using these factors. A total of 25 kinds of clothing were selected(9 types for suits, 6 types of jacket, 5 types for shirts, and 5 types for trousers). The results of this study were as follows; Thermal insulation of clothing showed the highest positive correlation(0.85, p>0.01) with thermal insulation of fabric and very high positive correlation with water vapor resistance, fabric thickness, fabric weight, and clothing weight, respectively, 0.77, 0.77, 0.73, 0.71(p>0.01). Fabric weight of jacket was higher than that of shirts and trousers. Air permeability of shirts was the highest of clothing types. Clothing insulation of jacket was higher than that of shirts and trousers and its fabric insulation was also the highest of clothing types. Regression analysis showed that fabric thickness, water vapor resistance, and fabric weight would be useful factors for estimating the thermal resistance of clothing.

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.

An Experimental Study on the Heat Transfer Characteristics of a High-temperature Sodium Heat Pipe Depending on the Thermal Transport Conditions (고온 나트륨 히트파이프에서 열이송 조건에 따른 열전달 특성에 대한 실험 연구)

  • Park, C.M.;Boo, J.H.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2340-2345
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. Two layers of Stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. As thermal transport conditions, the effective transport length, the heat flux, the tilt angle and the operating temperature were varied. The heat was supplied by an electric furnace up to 1 kW and the cooling was performed by forced convection of air. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total thermal resistance was as low as $0.036^{\circ}C/W$ at $175.8\;kW/m^2$ of heat flux and $700^{\circ}C$ of operating temperature.

  • PDF

A Study on the Insulation of Thermal Clothing Under Dynamic Air Condition (풍속 존재 시 쾌적보온성 의복의 온열특성에 관한 연구)

  • Song, Min-Kyu;Kwon, Myoung-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.29-37
    • /
    • 2008
  • The purpose of this study was to investigate insulation of thermal clothing under still and dynamic air conditions(with 2.1m/sec air velocity) and decrease of insulation in both conditions, to analyze correlations among them, and to estimate insulation and decrease of insulation using factors, such as fabric insulation, fabric weight, clothing weight, air permeability, and water vapor resistance. A total of 25 kinds of clothing were tested(9 types for suits, 6 types of jacket, 5 types for shirts, and 5 types for trousers). The results of this study were as follows; Thermal resistance of clothing under the dynamic air condition decreased comparing to that of clothing under still air condition in all types of clothing. Decrease in shirts was the biggest(47.5%), followed by suits(39.51%), trousers(37.48%), and jackets(34.49%) in sequence. Thermal resistance of clothing under dynamic air condition showed very high correlation(0.98, p<0.01) with that of clothing under still air condition, followed by thermal resistance of fabric(0.86, p<0.01). Decrease in thermal resistance of clothing showed the highest correlation with air permeability. It didn't show correlation with other factors. Regression analysis showed that fabric thickness would be useful factor for estimating thermal resistance of clothing and air permeability also would be useful factor for estimating decrease in thermal resistance of clothing.

Influence of the Effective Thermal Thansport Length on the Heat Transfer Characteristics of a Liquid-Metal Heat Pipe for High-temperature Solar Thermal Devices (유효열이송거리가 고온 태양열기기용 액체금속 히트파이프의 열전달 특성에 미치는 영향)

  • Park, Cheol-Min;Boo, Joon-Hong;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.220-225
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/$m^2$ and of operating temperature of 1000 K.

  • PDF

Analysis and modeling of thermal resistance of multi fin/finger FinFETs (멀티 핀/핑거 FinFET 트랜지스터의 열 저항 해석과 모델링)

  • Jang, MoonYong;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.39-48
    • /
    • 2016
  • In this paper, we propose thermal resistance compact model of FinFET structure that has hexagon shaped source/drain. The heating effect and thermal properties were increased by reduced size of the device, and thermal resistance is an important factor to analyze the effect and the properties. The heat source and each contact that is moved heat out were set up in transistor, and domain is divided by the heat source and the four parts of contacts : source, drain, gate, substrate. Each contact thermal resistance model is subdivided as a easily interpretable structure by analyzing the temperature and heat flow of the TCAD simulation results. The domains are modeled based on an integration or conformal mapping method through the structure parameters according to its structure. First modeled by analyzing the thermal resistance to a single fin, and applying the change in the parameter of the channel increases to improve the accuracy of the thermal resistance model of the multi-fin/ finger. The proposed thermal resistance model was compared to the thermal resistance by analyzing results of the 3D Technology CAD simulations, and the proposed total thermal resistance model has an error of 3 % less in single and multi-finl. The proposed thermal resistance model can predict the thermal resistance due to the increase of the fin / finger, and the circuit characteristics can be improved by calculating the self-heating effect and thermal characterization.