• Title/Summary/Keyword: Torsional ratio

Search Result 211, Processing Time 0.027 seconds

Experimental test on bridge jointed twin-towered buildings to stochastic wind loads

  • Ni, Z.H.;He, C.K.;Xie, Z.N.;Shi, B.Q.;Chen, D.J.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2001
  • This paper presents results of a study on wind loads and wind induced dynamic response of bridge jointed twin-towered buildings. Utilizing the high-frequency force balance technique, the drag and moment coefficients measured in wind tunnel tests, and the maximum acceleration rms values on the top floor of towers, are analyzed to examine the influence of building's plan shapes and of intervals between towers. The alongwind, acrosswind and torsional modal force spectra are investigated for generic bridge jointed twin-towered building models which cover twin squares, twin rhombuses, twin triangles, twin triangles with sharp corners cut off, twin rectangles and individual rectangle with the same outline aspect ratio as the twin rectangles. The analysis of the statistical correlation among three components of the aerodynamic force corroborated that the correlation between acrosswind and torsional forces is significant for bridge jointed twin-towered buildings.

Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength (입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구)

  • Choi, Mun-Gyu;Seo, Kyung-Bum;Park, Seong-Yong;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF

A Study on Vibration and Noise Reduction of a Lathe Gear Box (선반 기어박스의 진동.소음 분석과 저감에 관한 연구)

  • 박선균;최영휴;배병태;정택수;김청수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.552-558
    • /
    • 2001
  • When operating lathe gear box which is equipped with geared transmission, it sometimes generates loud noise and excessive vibrations. In order to identify their causes, in this study, torsional and lateral vibration characteristics including critical speeds of the gear transmission system are firstly analyzed using lumped parameter models. Natural frequencies and mode shapes of the gear box structure are also analyzed by using the modal test. Furthermore, measured vibration and noise signals during operations are analyzed and compared with theoretical analysis results. After all, it is concluded that the primary cause of the excessive noise and vibrations is the resonance between gear meshing frequency including its side bands, the frequencies of shaft bending and torsional vibrations, and the natural frequencies of the gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between the natural frequencies and gear meshing frequencies through the rearrangement of the gears on the transmission shaft without any gear ratio change.

  • PDF

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF

Effects of deck's width-to-depth ratios and turbulent flows on the aerodynamic behaviors of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lan, Chao-Yuan
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.263-278
    • /
    • 2003
  • This study investigates the effects of a bridge deck's width-to-depth (B/H) ratio and turbulence on buffeting response and flutter critical wind speed of long-span bridges by conducting section model tests. A streamlined box section and a plate girder section, each with four B/H ratios, were tested in smooth and turbulent flows. The results show that for the box girders, the response increases with the B/H ratio, especially in the vertical direction. For the plate girders, the vertical response also increases with the B/H ratio. However, the torsional response decreases as the B/H ratio increases. Increasing the B/H ratio and intensity of turbulence tends to improve the bridge's aerodynamic stability. Experimental results obtained from the section model tests agree reasonably with the calculated results obtained from a numerical analysis.

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.

Physical Properties or Jujube (Zizyphus jujuba miller) and Jujube Branches (대추 및 대추가지의 물리적 특성)

  • 민경선;이상우;허윤근;서정덕;맹성렬
    • Journal of Biosystems Engineering
    • /
    • v.27 no.4
    • /
    • pp.283-292
    • /
    • 2002
  • Mechanical and physical properties of various parts of jujube (Zizyphus jojoba Miller) such as fruits, leaves, secondary branches, and leafy stems were measured and analyzed. The physical dimensions of the fruits were measured using a digital caliper, and the detachment force of the fruit and leafy stems was measured using a force gauge. The physical characteristics of the secondary branches such as the modulus of elasticity and the torsional rigidity were tested using a universal testing machine (UTM). The physical characteristics of leafy stems such as length and weight were also measured using a digital caliper and a digital scale, respectively. The detachment force of leafy stems and the area of the leaf also measured. The terminal velocities of the jujube fruits, leaves, and leafy stems were measured using a custom made terminal velocity experiment system. Diameter of the major and minor axis of the jujube fruit, weight of the fruit, and detachment force of the fruit stem was average of 32.02 mm, 23.92 mm. 10.0 ${\times}$ 10$\^$6/ ㎥, 8.99 g, and 5.43 N. respectively. The detachment forces of the jujube fruits increased and the force-to-weight ratio of the jujube fruits decreased as the weight of the jujube fruits increased. The modulus of elasticity of the secondary branches of the jujube was average of 7.01 ${\times}$ 10$\^$8/ N/㎡ and decreased as diameter of the secondary branches increased. The average torsional rigidity of the secondary jujube branches was 5.2 ${\times}$ 10$\^$-/ N/㎡, and the torsional rigidity decreased as the secondary branch diameter increased. The distribution of the torsional rigidity data associated with the diameter of the branches, however. widely scattered and it was difficult to find any relationship between the diameter of the branches and the torsional rigidity of tile branches. The weight of the leafy stems, number of loaves attached to the leafy stems, diameter of the stem side of the leafy stems, diameter of the leafy stem end was average or 0.7 g, 6.6 ea, 12.2 cm, 4.5 mm, and 2.7 mm, respectively. The major and minor axis of the .jujube loaves, area of leaves, weight of the leaves. and detachment force of the leaves was average of 5.7 cm, 3.3 cm, 12.98 cm$^2$, 0.20 g, and 4.39 N, respectively. The terminal velocity of the .jujube fruits increased as the weight of the fruits increased. The terminal velocity of the leafy stems, however, did not show a relationship with the weight of the leafy stems and the number of leaves attached to the leafy stem. The terminal velocity, however, slightly increased as the length of the leafy stems increased.

Static Aanlysis of Curved box Girder Bridge with Variable Cross Section by Transfer Matrix Method (전달행렬법에 의한 변단면 곡선 상자형 거더교의 정적해석)

  • Kim, Yong-Hee;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.109-120
    • /
    • 2003
  • The state-of-art of curved box girder bridge with cross section design has advanced in various area. In these days, several analytical techniques for behaviors of curved box girder bridges cross section are available to engineers. The transfer matrix method is extensively used for the structural analysis because its merit in the theoretical background and applicability. The technique is attractive for implementation on a numerical solution by means of a computer program coded in Fortran language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method. Therefore, this paper proposed the static analysis method of curved box bridge with cross section by transfer matrix method based on pure-torsional theory and the optimal span ratio/variable cross section ratio of 3 span continuous curved box girder bridge.

An Experimental Study on Blasting Collapse Behavior of Asymmetry Structure with High Aspect Ratio (고종횡비 비대칭 구조물의 발파붕괴 거동에 관한 연구)

  • Song, Young-Suk;Jung, Min-Su;Jung, Dong-Wol;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In blasting demolition, a method would be chosen among many depends on shape and system of a structure and its surround. To demolish using explosives a structure, which is asymmetric and with high aspect ratio, pre-weakening, explosive locations, detonating delay, and surround conditions are needed to be considered in front to design blasting demolition plan. In this study, to over turn asymmetric and high aspect ratio structure in safe, a simulation using a software named Extreme Loadings for Structures, ELS, had performed. In results, it is achieved optimized pre-weakening shapes and locations, which prevent kick back motion of the structure when it collapse, by analyzing moment distribution caused by pre-weakening. And of structural collapse and by minimizing asymmetric structure's torsional moment. Also, after the demolition, simulation results are also compared with actual collapse behavior. In results, it is confirmed the accuracy of collapse behaviour simulation results, and in blasting demolition, kick back motion can be controled by adjusting pre-weakening shape and location, and the torsional moment of an asymmetric structure also can be solved by optimizing detonation locations and its time intervals.

Vibration Characteristics of Boxthorn(Lycium chinense Mill) (구기자 가지의 진동 특성)

  • 서정덕
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.105-114
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn (Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r -0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014-0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r 0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF