• Title/Summary/Keyword: Torsional box

Search Result 100, Processing Time 0.022 seconds

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

The bending-shear-torsion performance of prestressed composite box beam

  • Wei, Hu S.;Yu, Zhao K.;Jie, Wei C.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.577-585
    • /
    • 2017
  • To study the mechanical performances of prestressed steel-concrete composite box beam under combination of bending-shear-torsion, nine composite beams with different ratio of torsion to bending were designed. Torsion was applied to the free end of the beam with jacks controlled accurately with peripherals, as well as concentrated force on the mid-span with jacks. Based on experimental data and relative theories, mechanical properties of composite beams were analyzed, including torsional angle, deformation and failure patterns. The results showed that under certain ratio of torsion to bending, cracking and ultimate torsion increased and reached to its maximum at the ratio of 2. Three phases of process is also discussed, as well as the conditions of each failure mode.

The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending (비틀림과 평면외 굽힘을 받는 직사각단면 곡선 박판보 이론)

  • Kim, Yun-Yeong;Kim, Yeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2637-2645
    • /
    • 2000
  • We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Influence Line of Three- span Continuous Curved Box-Girder Bridge using Elastic Equation (탄성방정식을 이용한 3경간 연속곡선교의 영향선에 관한 연구)

  • 장병순;장준환;김수정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2001
  • In this paper, a three-span continuous box girder is analysed by using elastic equation based on energy method, concerning the behaviour with the effects of bending and pure torsional moment. The statically indeterminate forces of a three-span continuous curved box girder are calculated by applying the principle of least work to this elastic equation. The influence line of shear force, bending moment, pure torsion, displacement and angle of rotation due to unit vortical load and unit torque for curved box girder are obtained. The internal forces of the curved box girder which the actual load is applied can be calculated using the influence line obtained from this study.

  • PDF

Ground effects on wind-induced responses of a closed box girder

  • Mao, Wenhao;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • When bridges are constructed with lower heights from the ground, the formed channel between the deck and the ground will inevitably hinder or accelerate the air flow. This in turn will have an impact on the aerodynamic forces on the deck, which may result in unexpected wind-induced responses of bridges. This phenomenon can be referred to "ground effects." So far, no systematic studies into ground effects on the wind-induced responses of closed box girders have been performed. In this paper, wind tunnel tests have been adopted to study the ground effects on the aerodynamic force coefficients and the wind-induced responses of a closed box girder. In correlation with the heights from the ground in two ground roughness, the aerodynamic force coefficients, the Strouhal number ($S_t$), the vortex-induced vibration (VIV) lock-in phenomena over a range of wind velocities, the VIV maximum amplitudes, the system torsional damping ratio, the flutter derivatives, the critical flutter wind speeds and their variation laws correlated with the heights from the ground of a closed box girder have been presented through wind tunnel tests. The outcomes show that the ground effects make the vortex-induced phenomena occur in advance and adversely affect the flutter stability.

Computation of design forces and deflection in skew-curved box-girder bridges

  • Agarwal, Preeti;Pal, Priyaranjan;Mehta, Pradeep Kumar
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.255-267
    • /
    • 2021
  • The analysis of simply supported single-cell skew-curved reinforced concrete (RC) box-girder bridges is carried out using a finite element based CsiBridge software. The behaviour of skew-curved box-girder bridges can not be anticipated simply by superimposing the individual effects of skewness and curvature, so it becomes important to examine the behaviour of such bridges considering the combined effects of skewness and curvature. A comprehensive parametric study is performed wherein the combined influence of the skew and curve angles is considered to determine the maximum bending moment, maximum shear force, maximum torsional moment and maximum vertical deflection of the bridge girders. The skew angle is varied from 0° to 60° at an interval of 10°, and the curve angle is varied from 0° to 60° at an interval of 12°. The scantly available literature on such bridges focuses mainly on the analysis of skew-curved bridges under dead and point loads. But, the effects of actual loadings may be different, thus, it is considered in the present study. It is found that the performance of these bridges having more curvature can be improved by introducing the skewness. Finally, several equations are deduced in the non-dimensional form for estimating the forces and deflection in the girders of simply supported skew-curved RC box-girder bridges, based upon the results of the straight one. The developed equations may be helpful to the designers in proportioning, analysing, and designing such bridges, as the correlation coefficient is about 0.99.

Flutter performance of box girders with different wind fairings at large angles of attack

  • Tang, Haojun;Zhang, Hang;Mo, Wei;Li, Yongle
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.509-520
    • /
    • 2021
  • The streamlined box is a common type of girders for long-span suspension bridges. Spanning deep canyons, long-span bridges are frequently attacked by strong winds with large angles of attack. In this situation, the flow field around the streamlined box changes significantly, leading to reduction of the flutter performance. The wind fairings have different effects on the flutter performance. Therefore, this study examines the flutter performance of box girders with different wind fairings at large angles of attack. Computational fluid dynamics (CFD) simulations were carried out to extract the flutter derivatives, and the critical flutter state of a long-span bridge was determined. Further comparisons of the wind fairings were investigated by a rapid method which is related to the input energy by the aerodynamic force. The results show that a reasonable type of wind fairings could improve the flutter performance of long-span bridges at large angles of attack. For the torsional flutter instability, the wind fairings weaken the adverse effect of the vortex attaching to the girder, and a sharper one could achieve a better result. According to the input energies on the girder with different wind fairings, the symmetrical wind fairings are more beneficial to the flutter performance

A Study of Torsional Vibrations of Suspended Bridges (현수교(懸垂橋)의 비틀림진동(振動)에 관한 연구(硏究))

  • Min, Chang Shik;Kim, Saeng Bin;Son, Seong Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1983
  • A method of dynamic analysis is developed for torsional free vibrations of elliptical-box girder type or stiffening truss system suspension bridge. In this study, the method based on a finite element technique using a digital computer, is illustrated by two numerical examples, the Namhae Bridge which is located in Kyungsang nam-do opened on June, 1973, and the Mt. Chunma Bridge is simple span pedestrian's suspension bridge with lateral bracing system in Mt. Chunma, Kyungki-do, are used. In general, dynamic modes of complex suspension bridges are three-dimensional in form, i.e., coupling between vertical and torsional motions. However, introduced that amplitudes of oscillation are infinitesimal for coincidence with the purpose of it's use, thereupon, the torsional vibration analyses are treated without coupling terms. A sufficient number of natural frequencies and mode shapes for torsional free vibration are presented in this paper. In the case of Mt. Chunma Bridge, the natural frequencies and periods are computed with and without reinforcement, respectively, and compared their discrepancies. The influence of the auxiliary reinforcing cables is prevailing in the first few modes, namely, 1st and 2nd in symmetric and 1st, 2nd and 3rd in antisymmetric vibration, and conspicuous in the symmetric compared with the antisymmetric motion, but in the higher modes, this kind of simple accessory elucidates rether converse effects. In the Namhae Bridge, the results are compared with the Manual's obtained by wind tunnel test. It reveals commendable agreement.

  • PDF