• 제목/요약/키워드: Torsional Vibration Mode

검색결과 121건 처리시간 0.028초

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • 제14권3호
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

멀티스팬 빔의 진동특성에 관한 연구 (A Study on the Vibration Characteristics of Multi-span Beams)

  • 홍진선
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.856-861
    • /
    • 1998
  • Several reactor system components, such as heat exchange tubes, fuel fins, controlrods, and various instruments are beam-like components. This study presents a simple solution method for calculating the natural frequencies and modes of beams supported by linear and torsional springs and attached concentrated mass and rotational inertia at some intermediate points. For a general multi-span beam, theoretical method is proposed to analyze the exact solution about vibrational characteristics with respect to the nondimensional parameters. And the results obtained using the numerical models are presented and discussed.

  • PDF

Identification of flutter derivatives of bridge decks using stochastic search technique

  • Chen, Ai-Rong;Xu, Fu-You;Ma, Ru-Jin
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.441-455
    • /
    • 2006
  • A more applicable optimization model for extracting flutter derivatives of bridge decks is presented, which is suitable for time-varying weights for fitting errors and different lengths of vertical bending and torsional free vibration data. A stochastic search technique for searching the optimal solution of optimization problem is developed, which is more convenient in understanding and programming than the alternate iteration technique, and testified to be a valid and efficient method using two numerical examples. On the basis of the section model test of Sutong Bridge deck, the flutter derivatives are extracted by the stochastic search technique, and compared with the identification results using the modified least-square method. The Empirical Mode Decomposition method is employed to eliminate noise, trends and zero excursion of the collected free vibration data of vertical bending and torsional motion, by which the identification precision of flutter derivatives is improved.

부구조물 합성법을 이용한 슬라이딩 모드 조건을 갖는 비선형 구조의 동적 모델 수립 (Dynamic Model Establishment of a Nonlinear Structure with Sliding Mode Condition Using the Substructure Synthesis Method)

  • 김대관;이민수;고태환;한재흥
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.814-821
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. The component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its modal parameters are compare with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

수직펌프의 진동해석 (Vibration Analysis of Vertical Pumps)

  • 홍진선
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.928-935
    • /
    • 1999
  • Vertical pumps are widely used owing to the fact that they occupy small floor space. In this type of pumps, however, the vibrational problems are very important, since, in many cases, they have less stiffness in comparison with lateral pumps. This study presents a simple solution method for calculating the natural frequencies and modes of vertical pumps. In this study, a mode of a vertical pump was developed and the nondimensional parameters for the vibrational characteristics of it were determined. Added mass was calculated for the effects of water and the transfer matrix method was used.

  • PDF

선형적 요소 예측을 통한 비선형 시스템 동적 특성 연구 (A Study of the Linear Analysis for Nonlinear Torsional System)

  • 안민주;류성기;윤종윤;장기;안인효
    • 한국기계가공학회지
    • /
    • 제9권2호
    • /
    • pp.12-19
    • /
    • 2010
  • The characteristics of the torsional systems are generally examined with the nonlinearities such as the several staged clutch damper springs, gear backlashes and drag torques. Generally speaking, the system's characteristics can be found out by the eigensolutions which can show the system natural frequencies and the mode shapes. However, these factors can not give the complete solutions to avoid the noise and vibration problems related to the nonlinear effects. Therefore, several assumptions should be made for solving the real physical system problems under the linear analysis which can reflect the nonlinear effects in the torsional system. This means that the several modified linear factors such as the modified clutch damper spring constants can be used to examine and avoid the natural frequency zones related to the noise and vibration problems. Under the linear analysis with the assumed and modified values, the system can be investigated with the more reliable ways for the realistic phenomena.

횡-비틀림 연성진동하는 L형 단면 보의 크랙 검출에 대한 실험적 연구 (Experimental Study on Detection of Crack for Coupled Bending-torsional Vibrations of L-beams)

  • 손인수;이두호;노태우
    • 한국소음진동공학회논문집
    • /
    • 제21권2호
    • /
    • pp.169-177
    • /
    • 2011
  • In this paper, the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations is investigate by theory and experiment. In addition, a method for detection of crack in a cantilever L-beams is presented based on natural frequency measurements. The governing differential equations of a cracked L-beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one sixth order ordinary differential equation in terms of the flexural displacement. Futher, the dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. The crack is assumed to be in the first mode of fracture and to be always opened during vibrations. In this study, the differences between the actual and predicted positions and sizes of crack are less than about 10 % and 39.5 % respectively.

병렬처리기법을 활용한 T-형 꼬리날개의 진동 및 공탄성 특성 (Vibration and Aeroelastic Characteristics of a T-tail Configuration Using Parallel Processing Technique)

  • 김동현
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.149-156
    • /
    • 2004
  • In this study, vibration and aeroelastic analyses of a T-tail have been conducted. The structural dynamic computations of the T-tail are performed using MSC/NASTRAN and CFD-based computational aeroelastic analysis method is used to investigate the complex flutter phenomena. The results for vibration and aeroelastic analyses in the frequency and time domains are presented. It is importantly shown that the modal coupling of the torsional mode of vertical-wing and the asymmetric bending mode of horizontal-wing parts can give sensitive effects for the flutter stability of T-tail configurations.

두께가 얇은 단면을 갖는 곡선보의 자유진동 해석 (Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section)

  • 이병구;박광규;오상진
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF