• Title/Summary/Keyword: Torsional Vibration

Search Result 595, Processing Time 0.025 seconds

A Study on Structural Analysis of An Aluminum Bodyshell with A Modular Front End Made of Composite Materials (모듈형 복합재 전두부가 적용된 알루미늄 차체의 구조해석 연구)

  • 구정서;조현직;한형석
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.273-278
    • /
    • 2003
  • In this study, an aluminum bodyshell with a modular front end made of composite materials is numerically evaluated applying the standard specifications for the urban EMU (Electric Multiple Unit) train. Structural analyses under compressive load, torsional load and free vibration satisfy the standard specifications, but analysis under normal load doesn't. By the way, the aluminum bodyshell of the car except the modular front end is almost same to that of the Korean standard EMU, which satisfy the standard specifications. It is presumed that the stiffness of the modular front end made of composite materials has some influence on the strength of the aluminum bodyshell.

Steel-concrete composite bridge analysis using generalised beam theory

  • Goncalves, Rodrigo;Camotim, Dinar
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2010
  • This paper reports recent developments concerning the application of Generalised Beam Theory (GBT) to the structural analysis of steel-concrete composite bridges. The potential of GBT-based semi-analytical or finite element-based analyses in this field is illustrated/demonstrated by showing that both accurate and computationally efficient solutions may be achieved for a wide range of structural problems, namely those associated with the bridge (i) linear (first-order) static, (ii) vibration and (iii) lateral-torsional-distortional buckling behaviours. Several illustrative examples are presented, which concern bridges with two distinct cross-sections: (i) twin box girder and (ii) twin I-girder. Allowance is also made for the presence of discrete box diaphragms and both shear lag and shear connection flexibility effects.

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.

Added Mass Estimation of Square Sections Coupled with a Liquid Using Finite Element Method

  • Jeong, Kyeong Hoon;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.234-244
    • /
    • 2017
  • Natural frequencies of immersed square sections decrease due to a contribution of added mass to the movement of square sections. In this study, natural frequencies of square sections are obtained as a function of gap size between the square section and a rigid square wall using the finite element method. Additionally, they are used to extract the added mass effect on translational and rotation motions. Published information and studies on the translational and torsional vibration of square beams are also examined for practical use. D coupling of a square section is also investigated for multiple square sections. The suggested added mass estimation can be applicable to the spent fuel storage design of a pressurized light water modulated nuclear power plant.

Investigation on the Size and Center of Sweet Spot of Golf Club (골프클럽 안정타점영역의 크기와 중심에 관한 연구)

  • 이정윤;마정범;오재응
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.992-998
    • /
    • 1992
  • This paper presents a method for dynamic analysis of golf club. In the analysis, the sweet spot of golf club is defined based on the magnitude of torsional vibration, and transfer matrix method is employed for numerical calculations. It is shown that the calculated natural frequencies, mode shapes and transfer function agree well with the experimental results.

Wind Turbine Simulators Considering Turbine Dynamic Characteristics (터빈의 동특성을 고려한 풍력 터빈 시뮬레이터)

  • Park, Hong-Geuk;Abo-Khalil, Ahmed. G.;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.617-624
    • /
    • 2008
  • This paper proposes design and implementation of wind turbine simulators which incorporate the turbine dynamic characteristics. At first, the turbine output characteristic in steady state is modelled as a function of wind speed and then dynamic characteristics are modelled such as pitch angle control, torsional vibration, tower shadow effect, wind shear effect, and inertia effect. In addition, a wind speed simulator is developed which can generate the real wind speed pattern. The wind turbine simulator is implemented with 3[kW] M-G set(cage-type induction motor coupled with doubly-fed induction generator) at laboratory.

Shear-deformable finite element for free vibrations of laminated composite beams with arbitrary lay-up

  • Kahya, Volkan;Karaca, Sebahat;Vo, Thuc P.
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.473-487
    • /
    • 2019
  • A shear-deformable finite element model (FEM) with five nodes and thirteen degrees of freedom (DOFs) for free vibrations of laminated composite beams with arbitrary lay-up is presented. This model can be capable of considering the elastic couplings among the extensional, bending and torsional deformations, and the Poisson's effect. Lagrange's principle is employed in derivation of the equations of motion, and thus the element matrices are obtained. Comparisons of the present element's results with those in experiment, available literature and the 3D finite element analysis software (ANSYS(R)) are made to show its accuracy. Some further results are given as referencing for the future studies in vibrations of laminated composite beamst.

Updates of Korean Design Standard (KDS) on the wind load assessment and performance-based wind design

  • Han Sol Lee;Seung Yong Jeong;Thomas H.-K. Kang
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.117-131
    • /
    • 2023
  • Korea Design Standard (KDS) will be updated with two major revisions on the assessment of wind load and performance-based wind design (PBWD). Major changes on the wind load assessment are the wind load factor and basic wind speed. Wind load factor in KDS is reduced from 1.3 to 1, and mean recurrence interval (MRI) for basic wind speed increases from 100 years to 500 years considering the reduction of wind load factor. Additional modification is made including pressure coefficient, torsional moment coefficient and spectrum, and aeroelastic instability. Combined effect of the updates of KDS code on the assessment of wind load is discussed with the case study on the specified sites and building. PBWD is newly added in KDS code to consider the cases with various target performance, vortex-induced vibration, aeroelastic instability, or inelastic behavior. Proposed methods and target performance for PBWD in KDS code are introduced.

Simplified analysis method for anti-overturning of single-column pier girder bridge

  • Liang Cao;Hailei Zhou;Zhichao Ren
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.403-416
    • /
    • 2024
  • The single-column pier girder bridge, due to its low engineering cost, small footprint, and aesthetic appearance, is extensively employed in urban viaducts and interchange ramps. However, its structural design makes it susceptible to eccentric loads, flexural-torsional coupling effects, and centrifugal forces, among others. To evaluate its anti-overturning performance reasonably, it is crucial to determine the reaction force of the support for the single-column pier girder bridge. However, due to the interaction between vehicle and bridge and the complexity of vibration modes, it poses a significant challenge to analyze the theory or finite element method of single-column pier girder bridges. The unit load bearing reaction coefficient method is proposed in this study to facilitate the static analysis. Numerous parameter analyses have been conducted to account for the dynamic amplification effect. The results of these analyses reveal that the dynamic amplification factor is independent of road surface roughness but is influenced by factors such as the position of the support. Based on parameter analysis, the formula of the dynamic amplification factor is derived by fitting.

Non-linear Shimmy Analysis of a Nose Landing Gear with Free-play (유격을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Hwang, Jae-Up;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.973-978
    • /
    • 2010
  • In this paper, we studied the shimmy phenomena of an aircraft nose landing gear considering free-play. Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. This phenomena is caused by a couple of conditions such as low torsional stiffness of the strut, friction and free-play in the gear, wheel imbalance, or worn parts, and it may make an aircraft unstable. Free-play non-linearity is linearized by the described function for a stability analysis in a frequency domain, and time marching is performed using the fourth-order Runge-Kutta method. We performed the numerical simulation of the nose landing gear shimmy and investigated its linear and nonlinear characteristics. From the numerical results, we found limit-cycle-oscillations at the speed under linear shimmy speed for the case considering free-play and it can be concluded that the shimmy stability can be decreased by free-play.