Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.4.473

Shear-deformable finite element for free vibrations of laminated composite beams with arbitrary lay-up  

Kahya, Volkan (Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering)
Karaca, Sebahat (Karadeniz Technical University, Faculty of Engineering, Department of Civil Engineering)
Vo, Thuc P. (School of Engineering and Mathematical Sciences, La Trobe University)
Publication Information
Steel and Composite Structures / v.33, no.4, 2019 , pp. 473-487 More about this Journal
Abstract
A shear-deformable finite element model (FEM) with five nodes and thirteen degrees of freedom (DOFs) for free vibrations of laminated composite beams with arbitrary lay-up is presented. This model can be capable of considering the elastic couplings among the extensional, bending and torsional deformations, and the Poisson's effect. Lagrange's principle is employed in derivation of the equations of motion, and thus the element matrices are obtained. Comparisons of the present element's results with those in experiment, available literature and the 3D finite element analysis software (ANSYS(R)) are made to show its accuracy. Some further results are given as referencing for the future studies in vibrations of laminated composite beamst.
Keywords
laminated composite beam; free vibration; finite element method; anisotropy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ANSYS (2014), Mechanical APDL Release 16.0.
2 Chakraborty, A., Roy Mahapatra, D. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55, 23-36. https://doi.org/10.1016/S0263-8223(01)00130-1   DOI
3 Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "Vibration of laminated sandwich beams having soft core", J. Vib. Control., 18, 1422-1435. https://doi.org/10.1177/1077546311421947   DOI
4 Chandrashekhara, K. and Bangera, K.M. (1992), "Free vibration of composite beams using a refined shear flexible beam element", Comput. Struct., 43, 719-727. https://doi.org/10.1177/1077546311421947   DOI
5 Chen, W.Q., Lv, C.F. and Bian, Z.G. (2004), "Free vibration analysis of generally laminated beams via state-space-based differential quadrature", Compos. Struct., 63, 417-425. https://doi.org/10.1016/S0263-8223(03)00190-9   DOI
6 Filippi, M. and Carrera, E. (2016), "Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory", Compos. Part B Eng., 98, 269-280. https://doi.org/10.1016/j.compositesb.2016.04.050   DOI
7 Goyal, V.K. and Kapania, R.K. (2007), "A shear-deformable beam element for the analysis of laminated composites", Finite Elem. Anal. Des., 43, 463-477. https://doi.org/10.1016/j.finel.2006.11.011   DOI
8 Jafari-Talookolaei, R.A., Abedi, M., Kargarnovin, M.H. and Ahmadian, M.T. (2012), "An analytical approach for the free vibration analysis of generally laminated composite beams with shear effect and rotary inertia", Int. J. Mech. Sci., 65, 97-104. https://doi.org/10.1016/j.ijmecsci.2012.09.007   DOI
9 Jafari-Talookolaei, R.A., Abedi, M. and Attar, M. (2017), "Inplane and out-of-plane vibration modes of laminated composite beams with arbitrary lay-ups", Aerosp. Sci. Technol., 66, 366-379. https://doi.org/10.1016/j.ast.2017.02.027   DOI
10 Kadivar, M.H. and Mohebpour, S.R. (1998), "Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads", Finite Elem. Anal. Des. 29, 259-273. https://doi.org/10.1016/S0168-874X(98)00024-9   DOI
11 Mohebpour, S.R., Fiouz, A.R. and Ahmadzadeh, A.A. (2011), "Dynamic investigation of laminated composite beams with shear and rotary inertia effect subjected to the moving oscillators using FEM", Compos. Struct., 93, 1118-1126. https://doi.org/10.1016/j.compstruct.2010.09.011   DOI
12 Kahya, V. (2012), "Dynamic analysis of laminated composite beams under moving loads using finite element method", Nucl. Eng. Des., 243, 41-48. https://doi.org/10.1016/j.nucengdes.2011.12.015   DOI
13 Kahya, V. and Turan, V. (2018), "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., Int. J., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415
14 Lezgy-Nazargah, M., Shariyat, M. and Beheshti-Aval, S.B. (2011), "A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams", Acta Mech., 217, 219-242. https://doi.org/10.1007/s00707-010-0391-9   DOI
15 OMA (2006), Operational Modal Analysis Software.
16 Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2002), "Natural vibrations of laminated composite beams by using mixed finite element modelling", J. Sound Vib., 257, 635-651. https://doi.org/10.1006/jsvi.2002.5072   DOI
17 Jun, L., Hongxing, H. and Rongying, S. (2008), "Dynamic finite element method for generally laminated composite beams", Int. J. Mech. Sci., 50, 466-480. https://doi.org/10.1016/j.ijmecsci.2007.09.014   DOI
18 Reddy, J.N. (1997), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
19 Shao, D., Hu, S., Wang, Q. and Pang, F. (2017), "Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions", Compos. Part B Eng., 108, 75-90. https://doi.org/10.1016/j.compositesb.2016.09.093   DOI
20 Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct., 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053   DOI
21 Shi, G. and Lam, K.Y. (1999), "Finite element vibration analysis of composite beams based on higher-order beam theory", J. Sound Vib., 219, 707-721. https://doi.org/10.1006/jsvi.1998.1903   DOI
22 Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct., 73, 342-353. https://doi.org/10.1016/j.compstruct.2005.02.002   DOI
23 Vidal, P. and Polit, O. (2010), "Vibration of multilayered beams using sinus finite elements with transverse normal stress", Compos. Struct., 92, 1524-1534. https://doi.org/10.1016/j.compstruct.2009.10.009   DOI
24 Vo, T.P. and Thai, H.T. (2012a), "Free vibration of axially loaded rectangular composite beams using refined shear deformation theory", Compos. Struct., 94, 3379-3387. https://doi.org/10.1016/j.compstruct.2012.05.012   DOI
25 Vo, T.P. and Thai, H.T. (2012b), "Vibration and buckling of composite beams using refined shear deformation theory", Int. J. Mech. Sci., 62, 67-76. https://doi.org/10.1016/j.ijmecsci.2012.06.001   DOI
26 PULSE (2006), Analysers and Solutions.
27 Vo, T.P., Thai, H.T. and Inam, F. (2013), "Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory", Arch. Appl. Mech., 83, 605-622. https://doi.org/10.1007/s00419-012-0707-4   DOI
28 Vo, T.P., Thai, H.T. and Aydogdu, M. (2017), "Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory", Compos. Struct., 178, 406-414. https://doi.org/10.1016/j.compstruct.2017.07.022   DOI
29 Wang, X., Zhu, X. and Hu, P. (2015), "Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions", Int. J. Mech. Sci., 104, 190-199. https://doi.org/10.1016/j.ijmecsci.2015.10.008   DOI
30 Wimmer, H. and Gherlone, M. (2017), "Explicit matrices for a composite beam-column with refined zigzag kinematics", Acta Mech., 228, 2107-2117. https://doi.org/10.1007/s00707-017-1816-5   DOI