• 제목/요약/키워드: Torsion, Mechanical

검색결과 203건 처리시간 0.017초

The bending-shear-torsion performance of prestressed composite box beam

  • Wei, Hu S.;Yu, Zhao K.;Jie, Wei C.
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.577-585
    • /
    • 2017
  • To study the mechanical performances of prestressed steel-concrete composite box beam under combination of bending-shear-torsion, nine composite beams with different ratio of torsion to bending were designed. Torsion was applied to the free end of the beam with jacks controlled accurately with peripherals, as well as concentrated force on the mid-span with jacks. Based on experimental data and relative theories, mechanical properties of composite beams were analyzed, including torsional angle, deformation and failure patterns. The results showed that under certain ratio of torsion to bending, cracking and ultimate torsion increased and reached to its maximum at the ratio of 2. Three phases of process is also discussed, as well as the conditions of each failure mode.

유전 알고리듬을 이용한 토션빔 현가장치의 기구학적 최적설계 (Kinematic Optimum Design of a Torsion-Beam Suspension Using Genetic Algorithms)

  • 옥진규;백운경;손정현
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.25-30
    • /
    • 2006
  • This study is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam suspension system. The kinematic and compliance characteristics of an initial design of the suspension was obtained through a roll-mode analysis. The objective function was set to minimize within design constraints. The coordinates of the connecting point between the torsion-beam and the trailing arm were treated as design parameters. Since the torsion-beam suspension has large nonlinear effects due to kinematic and elastic motion, Genetic Algorithms were employed for the optimal design. The optimized results were verified through a double-lane change simulation using the full vehicle model.

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시 (Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings)

  • 류호완;한재준;김윤재
    • 대한기계학회논문집A
    • /
    • 제39권5호
    • /
    • pp.453-460
    • /
    • 2015
  • 후쿠시마 원전 사고 이후로 원자력 발전 플랜트의 배관 시스템에 가해지는 비틀림 하중의 영향에 대한 연구가 여러 연구자들에 의해서 수행되었다. 발전 플랜트의 원주방향 균열을 포함한 배관은 정상운전 조건이나 갑자기 발생한 사고에 의해서 굽힘과 비틀림과 같은 하중을 받을 수 있다. ASME 코드에서는 균열 배관의 구조건전성 확보를 위해서 한계하중 기법을 사용해서 완전소성 파단에 대한 결함평가를 제공한다. 최근 개정된 코드에 따르면, 복합하중은 막응력과 굽힘 응력만을 포함하고 있다. 실제로 운전 환경에서 비틀림 하중이 가해질 수 있음에도 불구하고, 비틀림 하중을 평가하는 방법론에 대해서는 언급하지 않았다. 본 논문에서는 한계하중 분석을 기반으로 원주방향 균열 존재하는 배관에 단순 굽힘과 단순 비틀림, 인장을 포함한 굽힘 비틀림 복합하중이 가해질 경우에 대한 유한요소해석 결과를 포함하고 있다. 전단면 완전항복 기준을 만족하는 한계하중 이론해를 제안하고 유한요소해석을 통해서 이를 검증하였다.

Warping stresses of a rectangular single leaf flexure under torsion

  • Nguyen, Nghia Huu;Kim, Ji-Soo;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.527-537
    • /
    • 2016
  • We describe a stress analysis of a single leaf flexure under torsion in which the warping effect is considered. The theoretical equations for the warping normal stress (${\sigma}_{xx}$) and shear stresses (${\tau}_{xz}$ and ${\tau}_{xy}$) are derived by applying the warping function of a rectangular cross-sectional beam and the twist angle equation that includes the warping torsion. The results are compared with those of the non-warping case and are verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is performed and verified via FEA. The results show that the errors between the theory of warping stress results and the FEA results are lower than 4%. This indicates that the proposed theoretical stress analysis with warping is accurate in the torsion analysis of a single leaf flexure.

초음파 나노표면개질을 적용한 궤도차량용 토션바 제조 및 재제조용 표면 개질기술에 관한 연구 (UNSM Surface Technology for Manufacturing and Remanufacturing Torsion Bars for Crawler Vehicles)

  • 서창민;편영식;조인호;백운봉
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.80-85
    • /
    • 2011
  • The Ultrasonic Nanocrystal Surface Modification (UNSM) technology improves the fatigue life of a torsion bar by inducing compressive residual stress on the surface layer. The UNSM is applied to replace the presetting method and shot peening technology. The torsion bar must be changed periodically because of a lack of durability and a phenomenon related to the stress relaxation. The torsion fatigue test specimens were made of DIN17221 material, and the results showed that the fatigue life was 5 times more than under durability test conditions. A comparison test between the commercial vehicles' presetting method and shot peened torsion bar and the UNSM torsion bar showed that the UNSM could replace the presetting method and shot peening.

복합재 티모센코 보의 굽힘 비틀림 연성 진동에 대한 엄밀해 (Exact Solutions for Bending-Torsion Coupled Vibration of Composite Timoshenko Beam)

  • 홍성욱;강병식;박중윤
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1559-1566
    • /
    • 2001
  • This paper proposes a dynamic analysis method for obtaining exact solutions of composite Timoshenko beams, which are inherently subjected to both the bending , and torsional vibrations. In this paper, the bending-torsion coupled vibration of composite Timoshenko beam is rigorously modelled and analyzed. Two numerical examples are provided to validate and illustrate the bending-torsion coupled vibration of composite Timoshenko beam structure. The numerical examples prove that the proposed method is of great use for the dynamic analysis of dynamic structures composed of multiply connected composite Timoshenko beams.

열간정수압성형공정으로 제조된 니켈기 초내열합금의 고압비틀림 공정을 통한 강소성 변형거동 분석 (Analyses of Sever Plastic Deformation Behavior of Hot Isostatic Pressed Ni-base Superalloy during High Pressure Torsion Process)

  • 이동준;이영선;김홍규;권용남;김형섭;윤은유
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.254-260
    • /
    • 2016
  • In this study, hot isostatic pressed Ni-base superalloy was subjected by high-pressure torsion process to improve the dispersion of gamma prime phase, mechanical properties and remove prior particle boundaries. The resulting microstructural size decreases and prior particle boundaries removed with increasing strain by high-pressure torsion process. Moreover, the microhardness values and room temperature tensile strength were enhanced. However, the tensile elongation was decreased as increasing strain due to fast crack propagation along the refined and well dispersed gamma prime particles.

Investigation of torsion, warping and distortion of large container ships

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.73-93
    • /
    • 2011
  • Large deck openings of ultra large container ships reduce their torsional stiffness considerably and hydroelastic analysis for reliable structural design becomes an imperative. In the early design stage the beam model coupled with 3D hydrodynamic model is a rational choice. The modal superposition method is ordinary used for solving this complex problem. The advanced thin-walled girder theory, with shear influence on both bending and torsion, is applied for calculation of dry natural modes. It is shown that relatively short engine room structure of large container ships behaves as the open hold structure with increased torsional stiffness due to deck effect. Warping discontinuity at the joint of the closed and open segments is compensated by induced distortion. The effective torsional stiffness parameters based on an energy balance approach are determined. Estimation of distortion of transverse bulkheads, as a result of torsion and warping, is given. The procedure is illustrated in the case of a ship-like pontoon and checked by 3D FEM analysis. The obtained results encourage incorporation of the modified beam model of the short engine room structure in general beam model of ship hull for the need of hydroelastic analysis, where only the first few natural modes are of interest.

알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동 (Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion)

  • 김기태;서정;조윤호
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF