• Title/Summary/Keyword: Torque-constant ratio

Search Result 45, Processing Time 0.022 seconds

Analysis of a Hydrodynamic Herringbone-Grooved Journal Bearing in a Small Precision Motor Considering Cavitation (공동현상을 고려한 소형 정밀 모터용 빗살무늬 저널베어링의 해석)

  • 창동일;장건희
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2680-2687
    • /
    • 2000
  • The Reynolds equation, incorporating Elrods cavitation algorithm, is discretized on a rectangular grid in computational space through coordinate mapping in order to accurately analyze a herringbone grooved journal bearing of a spindle motor in a computer hard disk drive. The pressure distribution and cavitation area are determined by using the finite volume method. Predicted results are compared to experimental data of previous researchers. It was found that positive pressure is developed within the converging section of the bearing and that a cavity occurs in the diverging section. Cavitation has been neglected in the previous analysis of the herringbone grooved bearing. Load capacity and bearing torque are increased due to the increased of eccentricity and L/D and the decrease of the grooved width ratio. The maximum load capacity was found to occur at a groove angle of 30 degrees while bearing torque remains constant due to the variation of the groove angle. The cavitation region is significantly decreased with the inclusion of herringbone grooves. However, the region increases with the increase of the eccentricity, L/D, groove angle and the rotational speed and the decrease of the grooved width ratio.

Characteristics of induction motor by changing the frequency of source (주파수 변화에 의한 유도전동기의 특성)

  • 박민호
    • 전기의세계
    • /
    • v.14 no.5
    • /
    • pp.20-27
    • /
    • 1965
  • There are several methods of speed control in induction motors. One of which is to change the frequency of source but was not used frequently because of the difficulty of frequency-change. Then, the development of frequency changer using semiconductor enables the method useful. In this paper the speed characteristics of mechanical output, secondary input torque and secondary power factor are described when the frequency of source and voltage which is proportional to the frequency of source in order to make the flux in the air gap in constant, are changed. The above characteristics are searched on the basis of the rated characteristics of the motor. Because the ratio of these is proportional to that of the secondary current or the square value of it. To get the ratio of the secondary current, a current circle diagram is introduced, and the magnitude of the ratio from this diagram is accurate and simple. Experimental results are in good agreement with theoretical predictions.

  • PDF

A study on the Modulated Scroll Compressor by Bypass Method (바이패스방식을 이용한 용량가변 스크롤 압축기에 관한 연구)

  • Kim, Cheol-Hwan;Shin, Dong-Koo;Park, Hong-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.693-696
    • /
    • 2003
  • Hermetic Compressor circulates refrigerant with constant flow rate regardless of operation condition. so, at the operating condition requiring low cooling capacity, too much refrigerant flow deteriorates seasonal energy efficiency ratio(SEER). In this reason, modulated compressor is needed to improve SEER. Among many types of modulated compressor, non-inverter type modulated compressor is required for its low cost and easy to development. In the modulated scroll compressor by bypass method, EER steeply decreases for many loss like re-compression, changes of volume ratio, decrease of motor efficiency by torque variation. So. the range of modulation ratio for optimized SEER must be selected accompany with air conditioner set development.

  • PDF

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

A Study on the Mode Conversion of Control in the Single Phase Switched Reluctance Motor (단상 SRM의 제어 모드 변환에 관한 연구)

  • Go, Sung-Chul;Ahn, Joon-Seon;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.635-636
    • /
    • 2006
  • A pulse with modulation(PWM) that keeps a constant angle of dwell and adjust duty ratio is a good method to control a speed of SRM. And a method of one pulse control is proper a operation on range of high speed in SRM for a good energy efficiency. Because PWM method is more safety than one pulse method, conversion of those is best choice according the speed range. So, some algorithm is need for smooth conversion of the mode of control. This paper presents a factor of conversion that proper the conversion of control mode between PWM and one pulse method This factor is from estimation of torque and proper at the variable range of conversion and show the better conversion characteristic than constant factor of conversion.

  • PDF

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.

Study on Vertical Axis Water Turbine with Movable Dual Blades (가변형 이중 날개를 갖는 수직축 수류터빈에 대한 연구)

  • Kim, Do-Hyung;Ahn, Byoung-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a vertical axis water turbine with dual blades. A parametric study was conducted using numerical analyses. First, a two-dimensional finite-volume analysis with a commercial code was used to find the pitch angle of the main blade under different tip speed ratio conditions. Second, we developed a potential-based panel method to find the best configuration of the inner blades. Experimental tests were conducted at the circulating water channel of Chungnam National University. Various configurations of the dual blades were considered, and their performances were comparatively investigated. The results showed that the turbine with movable dual blades produces a constant torque and tip speed ratio at various flow rates.

An Experimental Study on the Parts Performance of Dry CVT (건식 무단변속기 부품 성능에 관한 실험적 연구)

  • Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.73-80
    • /
    • 2006
  • The main advantages of the Dry CVT with V-belt, which has been popular in Asia, are a simple mechanism, less maintenance and low cost. The important factors which have an influence on the performance of the CVT are the weight of the centrifugal roller, the change of axial distance and spring force. Based on an experiment, the effects of load torque, speed ratio, and revolution of both the driving pulley and the driven pulley during the alteration of the axial distance, roller weight and spring constant were studied.

  • PDF

Vehicle traction control using fuzzy logic algorithm (퍼지 로직 알고리듬을 이용한 차량 구동력 제어)

  • 박성훈;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.680-683
    • /
    • 1996
  • The dynamics of the vehicle system has highly nonlinear components such as an engine, a torque converter and variable road condition. This thesis proposes a Fuzzy Logic Algorithm that shows better control performance than Antiwindup PI in the highly nonlinear vehicle system. Traction Control System(TCS), which adjusts throttle valve opening by Fuzzy Logic Algorithm improves vehicle drivability, steerability and stability when vehicle is starting and cornering. When a throttle valve is opened at large degree, Fuzzy Logic Algorithm shows better performances like a small settling time and a small oscillation than Antiwindup PI in simulation. The decreased desired slip ratio improves steerability in the simulation when a vehicle is cornering. The Fuzzy Logic Algorithm has been tested by a 1/5-scale vehicle for tracking the constant desired velocity.

  • PDF

Performance Evaluation of a Driving Power Transmission System for 50 kW Narrow Tractors

  • Hong, Soon-Jung;Ha, Jong-Kyou;Kim, Yong-Joo;Kabir, Md. Shaha Nur;Seo, Young Woo;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose: The development of compact tractors that can be used in dry fields, greenhouses, and orchards for pest control, weeding, transportation, and harvesting is necessary. The development and performance evaluation of power transmission units are very important when it comes to tractor development. This study evaluates the performance of a driving power transmission unit of a 50 kW multi-purpose narrow tractor. Methods: The performance of the transmission and forward-reverse clutch, which are the main components of the driving power transmission unit of multi-purpose narrow tractors, was evaluated herein. The transmission performance was evaluated in terms of power transmission efficiency, noise, and axle load, while the forward-reverse clutch performance was evaluated in terms of durability. The transmission's power transmission efficiency accounts for the measurement of transmission losses, which occur in the transmission's gear, bearing, and oil seal. The motor's power was input in the transmission's input shaft. The rotational speed and torque were measured in the final output shaft. The noise was measured at each speed level after installing a microphone on the left, right, and upper sides. The axle load test was performed through a continuous equilibrium load test, in which a constant load was continuously applied. The forward-reverse clutch performance was calculated using the engine torque to axle torque ratio with the assembled engine and transmission. Results: The loss of power in the transmission efficiency test of the driving power unit was 6.0-9.7 kW based on all gear steps. This loss of horsepower was equal to 11-18% of the input power (52 kW). The transmission efficiency of the driving power unit was 81.5-89.0%. The noise of the driving power unit was 50-57 dB at 800 rpm, 70-77 dB at 1600 rpm, and 76-83 dB at 2400 rpm. The axle load test verified that the input torque and axle revolutions were constant. The results of the forward-reverse clutch performance test revealed that hydraulic pressure and torque changes were stably maintained when moving forward or backward, and its operation met the hydraulic design standards. Conclusions: When comprehensively examined, these research results were similar to the main driving power transmission systems from USA and Japan in terms of performance. Based on these results, tractor prototypes are expected to be created and supplied to farmhouses after going through sufficient in-situ adaptability tests.