• 제목/요약/키워드: Torque angle

검색결과 755건 처리시간 0.03초

스위치드 릴럭턴스 전동기 최적운전을 위한 연구 (Research for Optimal Operation of Switched Reluctance Motors)

  • 정성인
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.143-148
    • /
    • 2023
  • SRM의 특성 중 비선형성으로 인해 최대토크 및 최소 토크 맥동 형성을 위한 적정 운전이 어렵다. 또한 고정 스위칭각 제어 때 속도 가변에 따른 토크 형성이 불안정하여 효율을 저하시키는 문제점을 가지고 있다. 따라서 속도 가변에 따른 능동적인 스위칭각 제어가 필요하다. 본 논문에서는 SRM의 비선형성으로 인한 문제점으로부터 선행각 (Advance angle)의 자동제어에 의한 토크 리플 저감과 이에 따른 출력 토크 향상에 의한 구동 성능개선을 위한 방법에 대해 모색하였다. 또한 히스테리시스 전류제어기 성능에 따른 스위칭 가변으로 인한 SRM의 최적 운전에 대해 살펴보았다.

밀링공정에서 주축모터전류를 이용한 절입비 추정 (Immersion Ration Estimation Using Spindle Motor Current during Milling)

  • 조규진;권원태;조동우;주종남
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.222-229
    • /
    • 1999
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ration using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to cutting torque acting on a single tooth at the swept angle of cut and can be acquired form cutting torque signals. Average cutting torque per revolution can also be calculate form cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current.

  • PDF

정면밀링공정중 추축모터전류를 이용한 절입비의 실시간 추정 (In-process Immersion Ratio Estimation Using Spindle Motor Current during Face Milling)

  • 조규진;오영탁;권원태;주종남
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.57-64
    • /
    • 2000
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ratio using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to the cutting torque acting on a single tooth at the swept angle of cut and can be acquired from cutting torque signals. Average cutting torque per revolution can also be calculated from cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current. Varying immersion ratio is also estimated well using the presented algorithm.

  • PDF

Comparison of the torque stability of Implant Torque Controllers

  • Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Korean Dental Science
    • /
    • 제2권1호
    • /
    • pp.19-27
    • /
    • 2009
  • Tightening of the screws in implant restorations should be accurate and precise. If applied torque is too low, screw loosening would be occurred. With too high torque, the screw fracture might take place. Various torque generating devices are developed and employed to apply a proper torque. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; electronic torque controller, torque limiting device, torque indicating device and contra angle torque driver. Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were done with each torque controller. All implant torque controllers have shown slight errors and deviations. The torque liming device exhibited the most accurate data. No significant difference was found among the mean de-torque values of the electronic torque controller, torque indicating device and contra angle torque driver. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.

  • PDF

하이브리드 스텝모우터의 토오크 리플 최소화를 위한 새로운 상여자방식 (New Phase Energization Strategies for the Minimization of Hybrid Step Motor Torque Ripples)

  • 김윤호;윤병도;엄태욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.133-136
    • /
    • 1991
  • New phase-energization strategies are proposed to minimize torque ripple of closed-loop controlled 2-phase Bifilar Hybrid step motors. Lead angle and conduction angles are important parameters in minimizing torque ripple factors. The phase-energization control strategy that minimizes torque ripples for the given average torque is proposed. In this paper, Fourier series are applied to produce the average torque. The strategy is performed by controlling both lead angle and conduction angle of the input voltage wave-form for each phase.

  • PDF

Comparisons of Linear Characteristic for Shape of Stator Teeth of Hall Effect Torque Sensor

  • Lee, Boram;Kim, Young Sun;Park, Il Han
    • Journal of Magnetics
    • /
    • 제17권4호
    • /
    • pp.285-290
    • /
    • 2012
  • Electric Power Steering (EPS) system is superior to conventional Hydraulic Power Steering (HPS) system in aspect of fuel economy and environmental concerns. The EPS system consists of torque sensor, electric motor, ECU (Electric Control Unit), gears and etc. Among the elements, the torque sensor is one of the core technologies of which output signal is used for main input of EPS controller. Usually, the torque sensor has used torsion bar to transform torsion angle into torque and needs linear characteristic in terms of flux variation with respect to rotation angle of permanent magnet. The torsion angle of both ends of a torsion bar is measured by a contact variable resistor. In this paper, the sensor is accurately analyzed using 3D finite element method and its characteristics with respect to four different shapes of the stator teeth are compared. The four shapes are rectangular, triangular, trapezoidal and circular type.

트랙터의 조타력 특성에 관한 실험적 연구 (Experimental Study on Steering Torque Characteristics of Tractor)

  • 이상식;강진석;문정환;이충호;홍종호;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제35권4호
    • /
    • pp.231-238
    • /
    • 2010
  • The purpose of this paper was to investigate experimentally the steering torque characteristics of a tractor operated in various ground conditions. The experiments were conducted with the tractor reconstructed for steering torque test of the tractor at two different off-road conditions (ground-I and ground-II) and a on-road condition (ground-III), three different levels of tire inflation pressures (69 kPa, 138 kPa and 207 kPa), and four different levels of axle loads (4120 N, 4730 N, 5340 N and 5950 N). The results of this study are summarized as follows: 1) The steering torque was increased with the increase in steering angle for all experimental levels of ground conditions, axle loads and inflation pressures of tire. 2) As the axle load increased, the steering torque of the tractor increased for all ground conditions, and the increasing rate of the steering torque with the increase of axle load was greater at on-road than at off-road. 3) As the tire inflation pressure decreased, the steering torque increased. Also the increasing tendency of the steering torque with decreasing the tire inflation pressure showed that the harder the ground was, the larger the effect was. But for the soft ground condition, ground-I, no specific trend with inflation pressures was found. 4) Steering angle-steering torque relationship with ground conditions showed that the increasing rate of the steering torque was greater at on-road than off-road for small steering angle under 10 degree, and was greater at off-road than on-road for large steering angles over 10 degree.

Wide-range Speed Control Scheme of BLDC Motor Based on the Hall Sensor Signal

  • Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.714-722
    • /
    • 2018
  • This paper presents a wide-range speed control scheme of brushless DC (BLDC) motors based on a hall sensor with separated low- and normal-speed controllers. However, the use of the hall sensor signal is insufficient to detect motor speed in the low-speed region because of low sensor resolution and time delay. In the proposed method, a micro-stepping current control method according to the torque angle variation is presented. In this mode, the motor current frequency and rotating angle are determined by the reference speed without the actual speed fed by the hall sensor. The detected torque angle is used to adjust the current value in a limited band to control the current value in accordance with the load. The torque angle is detected exactly at the changing point of the hall sensor signal. The rotor can follow the rotating flux with the variable torque angle. In a normal speed range, the conventional vector control scheme is used to control the motor current with a PI speed controller using the hall sensor. The torque characteristics are analyzed on the basis of the back EMF and current shape. To adopt the vector control scheme, the continuous rotor position is estimated by the measured speed and hall sensor position. At the mode changing point between low and normal speed range, the proper initial current command and reference rotor position are calculated. The calculated current command can reduce the torque ripple during transient mode. The proposed method is simple but effective in extending the speed control range of a conventional BLDC motor with hall sensor without the need for a high-resolution encoder. The effectiveness of the proposed method is verified by various experiments on a practical BLDC motor.

직접 순시 토크 제어에 의한 SRM 토크 리플 억제 (Torque Ripple Reduction of SRM using DITC)

  • 이진국;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.87-90
    • /
    • 2006
  • The direct instantaneous torque control (DITC) method is presented in this paper, which enables torque to be generated during all region and instantaneous torque control to be possible. The hysteresis control mode with the compared value between given torque and instantaneous output torque as input is applied in respect region. The output torque function, that is instantaneous output torque with the variation of current and position of rotor, is achieved by experiment. In this control mode the torque subsection function and current control are not needed. The turn on angle with variation of load torque and speed is only selected and turn off angle can be neglected. The validity of method is tested by simulation and experiment.

  • PDF

SRM의 최대 토크 운전을 위한 자기동조 제어 (Maximum Torque Operation of SRM by using a Self-tuning Control Method)

  • 서종윤;김광헌;장도현
    • 전력전자학회논문지
    • /
    • 제9권3호
    • /
    • pp.240-245
    • /
    • 2004
  • 본 연구에서는 SRM의 최대 토크 운전을 위한 자기동조 제어방법을 연구하였다. SRM은 비선형적인 특성이 강하여 해석적인 방법으로 특성을 고찰하거나 속도 및 토크 제어가 어려운 단점이 있다. 따라서 본 논문에서는 최대 토크 운전을 위한 적절한 턴-온/오프각 제어를 자기동조방식(self-tuning method)에 의해 결정하는 방식을 제안하였다. 그리고 턴-온/오프각을 제어하기 위해 귀환되는 신호는 각각 엔코더 펄스수와 상전류의 증분값을 사용하였으며, 운전 중에 스스로 적절한 턴-오프각을 먼저 추종하고 다음으로 턴-온각을 추종하게 된다. 턴-온/오프각은 서로 종속적인 관계에 있으므로 최대 토크 값을 유지하기 위한 턴-온/오프각을 실시간 자기동조방식으로 제어하였으며, 실험을 통해 제안된 방식이 타당함을 확인하였다.