• Title/Summary/Keyword: Torque Variation

Search Result 523, Processing Time 0.03 seconds

The barrier shape design for maximization of torque density in IPMSM (IPMSM의 토크밀도 극대화를 위한 Barrier의 형상 설계)

  • Youn, Jin-Gyu;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.897_898
    • /
    • 2009
  • This paper deal with the shape design of the flux barrier to maximize the torque density and minimize the torque ripple in IPM type BLDC motor. The variation of magnetic torque and reluctance toque according to the flux barriers is analyzed in the 120 conducting period. From the result, we confirmed the barrier can be quite worthwhile for the better performance of IPM type BLDC motor

  • PDF

A Study on the Inductance Variation According to the Rotor Shape in IPMSM (IPMSM의 회전자 형상에 따른 인덕턴스 변화에 대한 연구)

  • Kim, Hee-Woon;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.274-276
    • /
    • 2009
  • This paper presents a rotor shape optimization of interior type permanent magnet (IPM) motor for cogging torque minimization and maximization of reluctance torque. In order to minimize the cogging torque, the optimal notches are put on the rotor pole face and the arc type pole face is applied. The variations of cogging torque and d-q axis inductions are analyzed by finite element method (FEM).

  • PDF

Macro-Model of Magnetic Tunnel Junction for STT-MRAM including Dynamic Behavior

  • Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.728-732
    • /
    • 2014
  • Macro-model of magnetic tunnel junction (MTJ) for spin transfer torque magnetic random access memory (STT-MRAM) has been developed. The macro-model can describe the dynamic behavior such as the state change of MTJ as a function of the pulse width of driving current and voltage. The statistical behavior has been included in the model to represent the variation of the MTJ characteristic due to process variation. The macro-model has been developed in Verilog-A.

The Torque-current Observer Design for Speed.Torque Control of DC Motor (직류 전동기 속도.토크 제어에 대한 토크전류 관측기 설계)

  • Kim, Eun-Gi;Kim, Yong-Ju;Seo, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1091-1093
    • /
    • 2002
  • In this paper, the load torque observer is designed for speed and torque control of DC motor. Load torque is very sensitive to the variation and disturbance of the input parameters. The proposed system can accurately estimate the instantaneous speed even at the low speed range by using the load torque observer based on the torque component of DC motor. The system becomes robust against disturbances using a feed-forward control of the load torque estimated automatically at the speed observer.

  • PDF

Direct Torque Control of Induction Motor for Constant Switching by Torque Slop (토오크 기울기에 의한 일정스위칭을 위한 유도전동기의 직접토오크 제어)

  • Park, Jung-Kook;Kim, Dae-Kon;Jeong, Byeong-Ho;Choi, Youn-Ok;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.296-299
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional DTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(DTC) schemes are proposed. Those schemes are based on the torque slope and enable to reduce the torque ripple and maintain the switching frequency constantly.

  • PDF

Study on Optimal Condition of Adaptive Maximum Torque Per Amp Controlled Induction Motor Drives

  • Kwon, Chun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.231-238
    • /
    • 2014
  • Adaptive Maximum Torque Per Amp (Adaptive MTPA) control for induction motor drives seeks to achieve a desired torque with the minimum possible stator current regardless of operating points. This is favorable in terms of inverter operation and nearly optimal in terms of motor efficiency. However, the Adaptive MTPA control was validated only from the viewpoint of tracking a desired torque and was not shown that the desired torque is achieved with minimum possible stator current. This work experimentally demonstrates that optimal condition for Adaptive Maximum Torque Per Amp Control Strategy is achieved regardless of rotor resistance variation.

Speed Sensorless Torque Monitoring Of Induction Spindle Motor On Machine Tool (공작기계 주축 유도전동기의 속도 센서리스 토크 감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.18-23
    • /
    • 2002
  • In this paper, The torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental formulars are drawn for damping coefficient as a function of spindle speed and frictional force as a function of both cutting torque and spindle speed respectively, to estimate the cutting torque accurately. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is well monitored with 3% error range under various cutting conditions.

  • PDF

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.

Direct Torque Control of Induction Motor Using Flux & Torque Slop (자속 및 토오크 기울기를 이용한 유도전동기의 직접토오크 제어)

  • Choi, Youn-Ok;Choi, Mon-Han;Jeong, Sam-Young;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1137
    • /
    • 2003
  • The conventional DTC strategy provides a fast torque response even though it has very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. Drawbacks of the conventional BTC are relatively high torque ripple at low speed and variation of the switching frequency according to motor speed. In this paper, the new direct torque control(BTC) schemes are proposed. Those schemes are based on the torque slope and and flux to reduce the torque ripple.

  • PDF

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Jung, Seung-Hwan;Choy, Ick;Cho, Whang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2013
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of Interior Permanent Magnet Synchronous Motor (IPMSM). First, in order to improve the performance of speed tracking, a nonlinear back-stepping controller is designed. In addition, since it is difficult to achieve the high quality control performance without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. Finally, for the efficiency of power consumption of the motor, controller is designed to operate motor with the minimum current for the required maximum torque. The proposed controller is tested through experiment with a 1-hp Interior Permanent Magnet Synchronous Motor (IPMSM) for the angular velocity reference tracking performance and load torque volatility estimation, and to test the Maximum Torque per Ampere (MTPA) operation. The result verifies the efficacy of the proposed controller.