• Title/Summary/Keyword: Torque Servo Control

Search Result 171, Processing Time 0.026 seconds

An Analysis of Static and Dynamic Characteristics of Torque Motor (토크모터의 정특성과 동특성 해석)

  • Huh, J.Y.;Park, C.S.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • In the early of 1950, the high response magnetic torque motor was developed for driving electro-hydraulic servo valves. Since then it has been broadly used for industrial application and the research of development or improvement of the torque motor is still being conducted. The purpose of this study is to present useful design criteria for the torque motor design. For this, torque motor is modelled and linearized. The static characteristics of the torque motor are investigated by direct computation of the derived linearlized equations. The dynamic characteristics of the torque motor are investigated with the derived transfer function by using Matlab and compared with the results of the linearlized analysis by using AMESim simulation with actual values of the physical parameters. Finally, the design criteria obtained from the analysis are reviewed.

A Robust PID Control Algorithm for a Servo Manipulator with Friction

  • Jin, Jae-Hyun;Park, Byung-Suk;Lee, Hyo-Jik;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2275-2278
    • /
    • 2005
  • In this paper, a control algorithm for a servo manipulator is focused on. A servo manipulator system has been developed for remotely handling radioactive materials in a hot cell. It is driven by servo motors. The torque from a servo motor is transferred through a reducer to the corresponding axis. The PID control algorithm is a simple and effective algorithm for such application. However, since friction degrades the algorithm's performance, friction has to be considered and compensated. The major aberrations are the positional tracking errors and the limit cycle. The authors have considered a switching term to a conventional PID algorithm to reduce the friction's effect. It has been tested by a hardware test.

  • PDF

A Study on the Current Control Method for Torque Ripple Reduction of Brushless DC Motor (브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류 제어 방식에 관한 연구)

  • 이광운;홍희정;박정배;여형기;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.342-346
    • /
    • 1998
  • The brushless DC motor with trapezoidal back emfs has torque ripple due to phase commutation. The torque ripple generates noise and vibration and cause errors in position control so this makes the brushless DC motor less suitable for high performance servo applications. In this paper, we propose a new current control method to reduce the torque ripple due to commutation, when the unipolar PWM method is applied for the phase current control of brushless DC motor.

  • PDF

Design and Experiment of a Miniature 4/3-Way Proportional Valve for a Servo-Pneumatic Robot Hand (공압 구동식 로봇 손을 위한 소형 4/3-way 비례제어 밸브의 설계 및 실험)

  • 류시복;홍예선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.142-147
    • /
    • 1998
  • Developing robot hands with multi-degree-of-freedom is one of the topics that researchers have recently begun to improve the limitation by adding flexibility and dexterity. In this study, an articulated servo-pneumatic robot hand system with direct-drive joints has been developed whose main feature is the minimization of the dimension. The servo-pneumatic system is advantageous to fabricate a dexterous robot hand system due to the high torque-to-weight and torque-to-volume ratio. This enables the design of a finger joint with an integrated rotary vane type actuator which produces high output torque without reduction gears, being very robust. In order to control the servo-pneumatic finger joints, a miniature proportional valve that can be attached to the robot hand is required. In this paper, a flapper nozzle type 4/3-way proportional directional valve has been designed and tested. The experimental results show that the developed valve can control a finger joint satisfactorily without much vibratory joint movements and acoustic noises.

  • PDF

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

An adaptive control of servo motors for reducing the effect of cogging torques (코깅 토크의 영향 저감을 위한 서보 모터 적응제어)

  • 이수한;허상진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.291-294
    • /
    • 2004
  • Many researches have been focused on optimal designs of a pole shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed for reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.

  • PDF

An Adaptive Control of Servo Motors for Reducing the Effect of cogging Torques (코깅 토크의 영향 저감을 위한 서보 모터 적응제어)

  • Lee Soo Han;Heo Sang Jin;Shin Kyu Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.70-75
    • /
    • 2005
  • Many researches have been focused on optimal designs of a pole shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed fur reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.

A Study on the Torque Control Method of a Hydraulic Actuation System for Measuring the Dynamic Stiffness of Missile Fin Actuators (유도무기용 날개구동기의 동적 강성 측정을 위한 유압 구동장치의 토크제어 기법에 관한 연구)

  • Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • This paper presents a torque control method of a hydraulic actuation system for measuring the dynamic stiffness of missile fin actuators. We propose a new control technique called Dual Dynamic Torque Feedback Control(DDTFC), which improves the stability of the torque control system and enables fast tracking of torque command. The developed control scheme is derived from the physical understanding based on mathematical modelling and analysis. The dynamics of hydraulic torque control servo-system is unravelled via physics-based modelling and nonparametric system identification. In order to verify the effectiveness of the method, the experiment is carried out with a test equipment for measuring the dynamic stiffness. The experiment and simulation results show that DDTFC gives stability improvement.

A two-phase servo motor control circuit for the nut-runners employing the tightening torque control method (자동나사체걸기의 토크제어를 위한 AC 2상서보모터 제어회로 설계)

  • 김기엽;김일환;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.312-316
    • /
    • 1987
  • A simple hybrid circuit to control the two-phase AC motor of the nut-runners which employ the tightening torque control system is described in this paper. The circuit has emphasis on the low-cost implementation. The circuit constitutes of the V/F converter using a timer IC, the pulse width modulator using the fastening torque signal and the two-phase logic sequencer.

  • PDF

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.