• Title/Summary/Keyword: Torque Meter

Search Result 67, Processing Time 0.024 seconds

The Load Current Observer Design for Torque Control of DC Meter (직류 전동기의 속도 토크 제어를 위한 부하 전류 관측기 설계)

  • Seo Young-Soo;Kim Eun-Gi;Kim Yong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.155-158
    • /
    • 2001
  • In this paper, the Load Current Observer Design for 3-phase Voltage Type PWM Converter with DC Meter Load. The sinusoidal input current and unity input power factor are realised based on the estimated source voltage performed by the Load Current Observer using actual currents and DC link voltage.

  • PDF

A Study on the Screw Loosening Torque According to the Type of Tightening the Implant Fixture and Abutment (임플란트 고정체와 지대주의 체결방식에 따른 스크류 풀림토크에 관한연구)

  • Park, Soo-Chul;Kim, Hong-Sik;Ham, Sung-Won
    • Journal of Technologic Dentistry
    • /
    • v.35 no.3
    • /
    • pp.201-207
    • /
    • 2013
  • Purpose: In this study, the loosening torque test was conducted with three implant products that are produced, approved and sold in Korea, which are manufactured in different fixture and abutment tightening methods (internal submerged type, internal morse taper type, and external type) to examine the loosening torque of the screw according to the method of tightening the implant fixture and abutment. Methods: In the loosening torque test, the three types of fixtures and abutments with different tightening methods were tightened by rotating them clockwise with a $30N{\cdot}cm$ force using a driver equipped with an electric torque meter. The results of the test are as follows. Results: The loosening torque values of the internal submerged type, internal morse taper type and external type implants were $24.10{\pm}0.742N{\cdot}cm$, $29.10{\pm}1.710N{\cdot}cm$, and $26.60{\times}1.636N{\cdot}cm$, respectively. Conclusion: The screw loosening torque values of the three fixture and abutment tightening methods were analyzed via Kruskal Wallis test layout, and they were significantly different (p<0.05).

Study on measuring the low torque on an air tool operating at 100,000 RPM class (100,000 RPM급으로 회전하는 에어공구에서의 저토오크 측정에 관한연구)

  • Kim, Eun-Jong;Cho, Soo-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2018-2023
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM at the unloaded state with the low torque. An experimental apparatus is developed as the power absorption type dynamometer. Inlet static pressure, flow rate, RPM and force are measured simultaneously. Torque, output power and specific output power are obtained. Those experimental results are compared with the experimental results obtained on a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000RPM. In order to use the commercial dynamometer, a reduction gear is applied to the shaft of dynamometer. Torque and power obtained on the commercial dynamometer show 50% lower than those obtained on a power absorption type dynamometer, because the inertia force is added to the air tool rotor for the braking system. Moreover, the starting RPM on the commercial dynamometer is less than 40,000RPM. From the compared results, they show that the power absorption type dynamometer should be applied for measuring the performance of an air tool operating at low torque and high RPM.

  • PDF

A Study on the Measurement of Load Torque by the Field Coil Current in an Eddy Current Dynamometer (와전류 동력계에서 계자전류를 이용한 부하토크의 측정에 관한 연구)

  • Mun, Byung-Su;Lee, Eung-Suk;Lee, Hyung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.84-92
    • /
    • 2001
  • Commercial eddy current dynamometers control the torque of rotating body, power supply machine, with the field coil current being operated as a braking force. In this paper, we studied the relation between field coil current and torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer it is linear relation between the brake force measured from a torque meter which is installed at the case of dynamometer and the multiplied shaft rpm by the squares of field coil current (N$\times$I$^2$). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of the eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measure the torque of rotating body without a torque measuring device. such as load cell.

  • PDF

A Study on the Low Cost Testing System Development of the Low Speed and High Torque Harsh Reducer (저속 고토크 가혹감속기의 저비용 테스트 시스템 개발에 관한 연구)

  • Park, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.379-386
    • /
    • 2022
  • The goal of this research is to verify a performance test system for a low speed, high torque, and harsh reducer at low cost. The reducer rotates a cooling fan with a diameter of 10 meters, in a high temperature (50℃) cooling tower in a geothermal power plant. It requires about 500 kgf·m torque and 47.75 kW power to rotate the fan at a maximum power condition. An expensive dynamometer is commonly used for performance test of a motor or a reducer. In this paper, a low cost system is developed using a hydraulic pump as a load unit to generate torque instead of a dynamometer. We accurately calculated the required power, the flow meter, and the pressure of the pump, and selected to design and optimize the system at minimal cost. The system also applied another reverse reducer and a gearbox to increase the rotational speed and to reduce the torque from the low speed and high torque target reducer. This allows low-cost systems to be built using inexpensive components. The developed system was able to successfully measure the high torque and the low rotational speed of the target reducer at high temperature.

Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class (100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구)

  • Cho, Soo-Yong;Kim, Eun-Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.

Construction and Evaluation of an Experimental Type Torque Converter by Adapting an Electrorheological Fluid as an Operating Medium (전기유변유체를 동작매체로 하는 실험용 토크 전달장치 제작 및 성능평가)

  • 김상국;정동운;최윤대
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2706-2711
    • /
    • 1994
  • In this work, an experimental type of torque converter has been constructed and its characteristics have been evaluated by adapting an electrorheological fluid(ERF) as an operating medium. The device was designed by using the equations which were proposed by Carlson et al. The correlation between the rheological behaviour of an ERF and mechanical parameters of the clutch has been investigated. The torque generated by an ERF in this device is sum of one due to the yield strength by polarizing dispersed particles in dielectric oil and one due to the viscous drag. The experimental results are presented in terms of torque and current density as a function of rotational speed at various electric field strength applied. Experimental results showed that the measured torque was rapidly increased with the increase of the electric field, generally being proportional to the rotational speed of the motor. The measured current was shown to be increased with the increased electric field. Also, the current was decreased with the increase of increased with the increased electric field. Also, the current was decreased with the increase of the rotational speed of the motor and reached plateau region after f = 5 Hz.

Development of machinery parts test device for the rising high temperature and measuring large and tiny scale torque (기계류부품의 고온상승, 고 토크와 미소토크의 시험장치 개발)

  • Lee, Yong Bum;Park, Hong Won;Lee, Geun Ho
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • For a reliability assessment of machinery parts, accurate performance test, environmental test, life test, etc. are required on the sample. In the performance test conditions of various machinery parts, some problems happen such as needs to rise temperature rapidly with large flow of oil having very low thermal conductivity and to measure very high torque or tiny torque, etc. This study brings out the method to apply heat to rise temperature for large flow of oil without chemical change in a performance test of oil cooler. To measure large scale of torque in a performance test of planetary gearbox of excavator, the method of torque measurement is proposed by replacing the large torque meter priced very expensive. To measure very small torque on lubricated friction, a methode of force balance type test mechanism is introduced for tests of piston assembly.

A Study on the Secure Plan of Clamping Force according to the Variation of Torque-Coefficient in Torque-Shear High Strength Bolts (토크전단형 고력볼트의 토크계수 변동에 따른 체결축력 확보방안에 관한 연구)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.8-16
    • /
    • 2014
  • Torque control method and turn of nut method are specified as clamping method of high strength bolts in the steel construction specifications. Quality control of torque coefficient is essential activity because torque control method, which is presently adopted as clamping method in domestic construction sites, is affected by variation of torque coefficient. The clamping of torque shear bolt is based on KS B 2819. It was misunderstood that the tension force of the TS bolt was induced generally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the intended tension, as it considerably varies due to torque coefficient dependent on the environmental factors and temperature variables despite the break of the pin tail.This study was focused to evaluate the effect of environmental factors and errors of installing bolts during tightening high strength bolts. The environmental parameters were composed of 'wet' condition, 'rust' condition, 'only exposure to air' condition. And the manufacture of trial product was planned to identify the induced force into the bolts. The algorithm for a trial product was composed of the relation between electricity energy taken from torque shear wrench and tension force from hydraulic tension meter.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.