• Title/Summary/Keyword: Torque Matching

Search Result 17, Processing Time 0.025 seconds

Effect of Fatigue on Force-Matching in the Quadriceps Muscle

  • Song, Young-Hee;Lee, Su-Young;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.10-15
    • /
    • 2006
  • This study examined the ability of human subjects to match a force in their quadriceps muscle during fatigue. Twenty subjects (mean age: 23.4 yrs, mean height: 167.8 cm, mean weight, 62.6 kg) were enrolled in the experiment. In the force-matching task, the quadriceps muscle generated 50% of the MVIC (maximum voluntary isometric contraction) torque under visual control and then without visual feedback. After inducing fatigue in the quadriceps muscle, the subjects were required to match 50% of the MVIC torque without visual feedback. The perceived magnitude of the force and force-matching errors were measured. 50% of the MVIC torque was perceived from 39.96 Nm in the pre-fatigue condition to 44.95 Nm in the post-fatigue condition. 50% of the MVIC torque-matching errors increased significantly from .55% in the pre-fatigue condition to 9.6% in the post-fatigue condition (p<.001). in addition, there were significantly more force-matching errors in women than in men (p<.01). In conclusion muscle fatigue can interfere with a subject's ability to match a force. This suggests that muscle fatigue may contributes to the sensitization of the proprioception.

  • PDF

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

Manipulator Path Design to Reduce the Endpoint Residual Vibration under Torque Constraints (토크 제한하에서의 첨단부 잔류진동 감소를 위한 매니퓰레이터 경로설계)

  • 박경조;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2437-2445
    • /
    • 1993
  • In this work, a new method is presented for generating the manipulator path which significantly reduces residual vibration under the torque constraints. The desired path is optimally designed so that the required movement can be achieved with minimum residual vibration. From the previous research works, the dynamic model had been established including both the link and the joint flexibilities. The performance index is selected to minimize the maximum amplitude of residual vibration. The path to be designed is developed by a combined Fourier series and polynomial function to satisfy both the convergence and boundary condition matching problems. The concept of correlation coefficients is used to select the minimum number of design variables, i.e. Fourier coefficients, the only ones which have a considerable effect on the reduction of residual vibration. A two-link Manipulator is used to evaluate this method. Results show that residual vibration can be drastically reduced by selecting an appropriate manipulator path to both of unlimited and torque-limited cases.

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.

Robust PID Controller Design for Speed Control of BLDC Motors (BLDC 모터 속도제어를 위한 견실 PID 제어기 설계)

  • 양승윤;김인수;전완수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • In this paper, the robust PID(Proportional-Integral-Derivative) controller was designed for speed control of BLDC motors using the frequency region model matching method. It was designed the robust PID controller satisfying disturbance attenuation and robust tracking performance using an H$\infty$ control method. The robust PID controller gains with the performances of the designed H$\infty$ controller are determined using the model matching method at frequency domain. Consequently, simulation results show that the proposed PID speed controller satisfies load torque disturbance attenuation and robust tracking performance, and this study has usefulness and applicability for the speed control system design of BLDC motors.

Quality characteristics and the process control of high-strength frictional bolt-sets (고장력 마찰접합 볼트세트의 품질특성에 관한 연구)

  • Son, S.Y.;Shin, K.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.189-196
    • /
    • 1994
  • Quality assurance in the process of manufacturing high strengh bolt sets used in the frictional joints of structures in one of important concern to users as well as to manufactures. In case of occurrences of either defective or low-quality products, even if they are quite rare, some systematic means of localizing the cause-characteristics and matching to corresponding production process is necessary. Control chart of torque factor is the primary indicatir in finding defectiveness of the products. Use of correlation diagrams ofnhardness of the bolt set presents in part a way of screening the cause. Retest data of the bolt set provide additional ideas of localizing the cause, for which theoretical background is presented in this regard. A process-characteristics matrix relating the causes of low quality to the corresponding process of manufacturing, which is of prime importance for the feedback control of production, is also proposed. Finally general features of control to assure quality of the set is described.

  • PDF

Robust PID Controller Tuning Technique and Applicationi to Speed Controller Design for BLDC Motors (견실 PID 제어기 조정기법 및 BLDC 모터의 속도제어기 설계에의 응용)

  • Kim, In-Soo;Lee, Young-Jin;Park, Sung-Jun;Park, Han-Woong;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.126-133
    • /
    • 2000
  • This paper is a study on robust PID controller tuning technique using the frequency region model matching method.To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input first an {{{{ETA _$\infty$}}}} controller satisfying given performances is designed using an H$_{\infty}$ control method, And then the parameters(proportional gain integral gain and derivation gain) of the robust PID controller with the performances of the desinged H$_{\infty}$ controller are determined using the model matching method at frequency domain. in this paper this PID controller tuning technique is applied to PID speed controller design for BLDC motors. Consequently simulation results show that the proposed PID speed controller satisfies load torque disturbance attenuation and robust tracking property and this study has usefulness and applicability for the speed control system; design of BLDC motors.

  • PDF

A study on dual mass flywheel for a jeep vehicle with Diesel Engine (디젤엔진을 탑재한 짚차량의 2분할 플라이휠에 관한 연구)

  • 정종안;조찬기
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.17-22
    • /
    • 1997
  • This paper reals with the structure and function of duel mass flywheel. Damping effects of engine rotational fluctuation are compared with those of pre-damper clutch and duel mass flywheel and driven- system behavior is estimated engine idle r.p.m. The reason of gear rattle noise is higher in summer than winter and driving longer period than initial driving is due to affection by drag torque changing. The above-contents can be used on the design of clutch system and transmission matching including engine and duel mass flywheel.

  • PDF

System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner (진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석)

  • Park, Chang-Hwan;Park, Kyung-Hyun;Chang, Kyung-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

Robust Tracking Control of Robotic Manipulators Using Fuzzy-Sliding Modes (퍼지-슬라이딩모드를 이용한 로봇의 강건추적제어)

  • 김정식;최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2088-2100
    • /
    • 1994
  • Considerable attention has been given to controller designs that utilize the variable structure system theory in order to achieve robust tracking performance of robotic manipulators subjected to parameter variations and extraneous disturbances. However, the theory has not had wide spread acceptance in practical control engineering community due mainly to the worry of chattering which is inherently ever-existing in the variable structure system. This paper presents a novel type of fuzzy-sliding mode controller to alleviate the chattering problem. A sliding mode controller for robust robot control is firstly synthesized with an assumption that the imposed system uncertainties satisfy matching conditions so that certain deterministic performances can parameters and control rules are obtained from a relation between predetermined sliding surfaces and representative points in the error state space. A two degree-of-freedom robotic manipulator subjected to a variable payload and a torque disturbance is considered in order to demonstrate superior tracking performance accrued from the proposed methodology.