• Title/Summary/Keyword: Torpedo Defense

Search Result 30, Processing Time 0.02 seconds

The Development of Torpedo Defense Experimental Technique based on M&S (M&S 기반 어뢰방어전 모의실험 기술 구현)

  • Nah, Young-In;Lee, Sim-Yong;Yoon, Han-Saem
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.818-823
    • /
    • 2010
  • Exploiting models and simulations are encouraged among the defense acquisition society, as now enforced by the Defense Aquisition Program Administration's regulations. They are useful and, sometimes, inevitable especially in an earlier phase of system development. Computer-simulation-based experimentation technique for the system operational performance analysis for a torpedo defense system is introduced in this paper. Problem definition for the torpedo defense system analysis and engineering efforts for models and simulations development are presented here, including defining measures of performance and effectiveness for the torpedo defense system, conceptual modeling for torpedo engagement and defense simulation, design of experimentation, design of simulator and experimentor, and hardware and software implementation of an analysis support tool - a system operations demonstration and experimentation simulator.

A Simulator Development of Surface Warship Torpedo Defense System considering Bubble-Generating Wake Decoy (기포발생식 항적기만기를 고려한 수상함 어뢰방어체계 시뮬레이터 개발)

  • Wooshik Kim;Myoungin Shin;Jisung Park;Ho Seuk Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.416-427
    • /
    • 2024
  • The wake-homing underwater guided weapon that detects and tracks wake generated during voyage of a surface ship is impossible to avoid with the present acoustic deception torpedo defense system. Therefore, research on bubble-generating wake decoy is necessary to deceive wake-homing underwater guided weapon. Experiments in various environments are required to verify the effective operation method and performance of the wake decoy, but performance verification through underwater experiment is limited. In this paper, we develop a simulator for an torpedo defense system of surface ship, which is applied bubble-generating wake decoy, against acoustic, wake, and hybrid homing underwater guided weapon attack. The simulator includes surface ship model, acoustic decoy(static, mobile) model, bubble-generating wake decoy model, search and motion model of underwater guided weapon and so on. By integrating various models, MATLAB GUI simulator was developed. Through the simulation results for various environmental variables by this simulator, it is judged that effective operation method and performance verification of the bubble-generating wake decoy can be performed.

Effectiveness Analysis for Survival Probability of a Surface Warship Considering Static and Mobile Decoys (부유식 및 자항식 기만기의 혼합 운용을 고려한 수상함의 생존율에 대한 효과도 분석)

  • Shin, MyoungIn;Cho, Hyunjin;Lee, Jinho;Lim, Jun-Seok;Lee, Seokjin;Kim, Wan-Jin;Kim, Woo Shik;Hong, Wooyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.53-63
    • /
    • 2016
  • We consider simulation study combining static and mobile decoys for survivability of a surface warship against torpedo attack. It is assumed that an enemy torpedo is a passive acoustic homing torpedo and detects a target within its maximum target detection range and search beam angle by computing signal excess via passive sonar equation, and a warship conducts an evasive maneuvering with deploying static and mobile decoys simultaneously to counteract a torpedo attack. Suggesting the four different decoy deployment plans to achieve the best plan, we analyze an effectiveness for a warship's survival probability through Monte Carlo simulation, given a certain experimental environment. Furthermore, changing the speed and the source level of decoys, the maximum torpedo detection range of warship, and the maximum target detection range of torpedo, we observe the corresponding survival probabilities, which can provide the operational capabilities of an underwater defense system.

The Study on the Effectiveness of an Anti-Submarine Defense Plan According to the Disposition of Surface Ships (수상함의 배치에 따른 대잠 방어계획 효과도 연구)

  • Yu, Chan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.572-578
    • /
    • 2011
  • In this paper, the result of study on the effectiveness of anti-submarine defense plan according to the disposition of surface ships has been proposed. The surface ship carries a hull mounted sonar(HMS) as a underwater sensor and a torpedo acoustic counter measure(TACM) as a soft-kill weapon against torpedo attacks from the enemy. Nowadays these underwater systems have been combined into a integrated anti-submarine warfare combat system. And in the real anti-submarine operation environment, several surface ships cooperate for executing ASW plans. Considering these ASW systems and the ASW environment, the models of underwater systems mounted on an surface ship and the a general model of anti-submarine defense plan are proposed. And we designed a scenario for conducting simulations to evaluate the ASW plan according to the variation of the range and the relative angle between surface ships and a capital ship. The simulation results show the effectiveness of ASW plan depends on the formation of surface ships and a capital ship.

Torpedo defense system research using HMS(Hull Mount Sonar) of PCC(Patrol Combat Corvette) (초계함용 HMS(Hull Mount Sonar)를 이용한 어뢰방어시스템 연구)

  • Kim, Hee-Earn;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2569-2574
    • /
    • 2012
  • HMS(Hull Mount Sonar) equipment mounted on PCC(Patrol Combat Corvette) is suitably designed for active mode, and the specific character of sensor or system is not appropriate for the frequency range to detect a torpedo. In this article, in order to implement the function of detecting torpedoes with HMS of existing PCC, I will analyze the feature of input signals each PCCs and design a circuit to compensate reversely for the input signal in certain frequency. And also, I will suggest the most adequate torpedo defense system suitable for the special operating environment and the characteristic of naval vessels, implementing functions such as AGC of input signal and fixing the frequency range of different input signals per different warships.

Research on Experimentation Methodology for Analysing Parameter Sensitivity of Hard-Kill Torpedo Defence System in Engagement Stage (하드-킬 어뢰 방어체계 최종 교전단계에서의 파라미터 민감도 분석을 위한 모의시험 모델 연구)

  • Cho, Hyunjin;Kim, Wanjin
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • This paper introduces experimental design and components model for analysing the impact of parameter(in the field of kinematics and sensor) on performance of hard-kill torpedo defence system. The simulation is implemented at the level of engagement and its scope is limited to final stage of engagement where main function of anti-torpedo system is operating. It improves the fidelity of physical realism by precise model of simulation components in the perspectives of kinematics, sensor capability and acoustic detection theory. This paper provides the experimentation methodology for evaluating parameter sensitivity which is required to analyze in advance of development the defense system with novel concepts. In addition, the experimental result shows the tendency of defense capability according to parameter adjustments.

Development of Torpedo Target Detection Section Interface Simulation System based on DEVS Integrated Development Environment (DEVS 통합개발환경 기반 모의 어뢰 표적탐지부 연동장비 개발)

  • Lee, Min Kyu;Hwang, Kun Chul;Lee, Dong Hoon;Nah, Young In;Kim, Woo Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • It is necessary for us to undergo trial and error for eliciting the rational requirement of the acquisition of weapon systems, but the M&S is general approach due to costs and risk of the development. In addition to the acquisition of weapon systems, M&S is extensively employed in the analysis and the training of developed weapon systems. The ADD (Agency for Defense Development) has developed DEVS integrated development environment (QUEST) that provides M&S general ground technique composed of simulation model implementation services, simulation result analysis services, and simulation interface services. This paper describes the interface architecture and the implementation of torpedo target detection section interface simulation system using QUEST. The torpedo target detection section interface simulation system is composed of torpedo target detection section which calculates a result of target detection and the QUEST scenario generator which provides simulation scenario for performance test of the torpedo target detection section. The interface architecture of torpedo target detection section interface simulation system is designed to verify the interface and performance of the torpedo target detection section by linking with the QUEST scenario generator.

Experimental Study on Artificial Supercavitation of the High Speed Torpedo (고속 어뢰의 인공 초공동 특성에 대한 실험 연구)

  • Ahn, Byoung-Kwon;Jung, So-Won;Kim, Ji-Hye;Jung, Young-Rae;Kim, Sun-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.300-308
    • /
    • 2015
  • Recently supercavitating underwater torpedo moving at high speed (over 200 knots) has been interested for their practical advantage of the dramatic drag reduction. Cavitator located in front of the torpedo plays an important role to generate a natural supercavity and control the motion of the object. Supercavity can be created artificially by injection of compressed gas from the rear of the cavitator at a relatively low speed. In this paper, we investigated physical characteristics of artificial supercavities through cavitation tunnel experiments. One of the main focuses of the study was to measure pressure inside the cavity, and examined variation of the gravity effects appearing according to different amount of injected air. It was also found that a stable supercavity could be sustained at injection rates less than that required to form the stable supercavity because of hysteresis effect.

Torpedo defense system research using HMS(Hull Mount Sonar) of PCC(Patrol Combat Corvette) (초계함용 HMS(Hull Mount Sonar)를 이용한 어뢰방어시스템 연구)

  • Kim, Hee-Earn;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.349-352
    • /
    • 2011
  • HMS(Hull Mount Sonar) equipment mounted on PCC(Patrol Combat Corvette) is suitably designed for active mode, and the specific character of sensor or system is not appropriate for the frequency range to detect a torpedo. In this article, in order to implement the function of detecting torpedoes with HMS of existing PCC, I will analyze the feature of input signals each PCCs and design a circuit to compensate reversly for the input signal in certain frequency. And also, I will suggest the most adequate torpedo defense system suitable for the special operating environment and the charateristic of naval vessels, implementing functions such as AGC of input signal and fixing the frequency range of different input signals per different warships.

  • PDF

Constructive Simulation and Experimentation for Supporting Light Weight Torpedo Operational Tactics Study (경어뢰 운용전술연구지원을 위한 구성시뮬레이션 및 모의실험)

  • Lee, Sim Yong;Go, Seung Ryeol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.769-778
    • /
    • 2016
  • Technical approach on the modeling, simulation and experimentation methods, which are applied for developing a constructive simulation and engagement experimentation software for supporting light weight torpedo operational tactics study, is introduced. Conceptual modeling for the weapon engagement and simulation entities, mathematical models for the simulation elements, approach for the design of experimentations are described, and screen shots of the software are also presented as some example results of experimentation and analysis. It is found that the simulation and experimentation results are useful to support and fulfill the mission needs and requests. As a consequence, the technical approach is rated to be appropriate to accomplish the dedicated purpose of the simulation and experiments.