• Title/Summary/Keyword: TorC1

Search Result 61, Processing Time 0.021 seconds

Mechanistic target of rapamycin and an extracellular signaling-regulated kinases 1 and 2 signaling participate in the process of acetate regulating lipid metabolism and hormone-sensitive lipase expression

  • Li, Yujuan;Fu, Chunyan;Liu, Lei;Liu, Yongxu;Li, Fuchang
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1444-1453
    • /
    • 2022
  • Objective: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. Methods: The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. Results: It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. Conclusion: Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.

Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration

  • Kim, Lou W.
    • BMB Reports
    • /
    • v.50 no.9
    • /
    • pp.437-444
    • /
    • 2017
  • Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.

High glucose induces differentiation and adipogenesis in porcine muscle satellite cells via mTOR

  • Yue, Tao;Yin, Jingdong;Li, Fengna;Li, Defa;Du, Min
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.140-145
    • /
    • 2010
  • The present study investigated whether the mammalian target of rapamycin (mTOR) signal pathway is involved in the regulation of high glucose-induced intramuscular adipogenesis in porcine muscle satellite cells. High glucose (25 mM) dramatically increased intracellular lipid accumulation in cells during the 10-day adipogenic differentiation period. The expressions of CCAAT/enhancer binding protein-$\alpha$ (C/EBP-$\alpha$) and fatty acid synthase (FAS) protein were gradually enhanced during the 10-day duration while mTOR phosphorylation and sterol-regulatory- element-binding protein (SREBP)-1c protein were induced on day 4. Moreover, inhibition of mTOR activity by rapamycin resulted in a reduction of SREBP-1c protein expression and adipogenesis in cells. Collectively, our findings suggest that the adipogenic differentiation of porcine muscle satellite cells and a succeeding extensive adipogenesis, which is triggered by high glucose, is initiated by the mTOR signal pathway through the activation of SREBP-1c protein. This process is previously uncharacterized and suggests a cellular mechanism may be involved in ectopic lipid deposition in skeletal muscle during type 2 diabetes.

mTOR Signal Transduction Pathways Contribute to TN-C FNIII A1 Overexpression by Mechanical Stress in Osteosarcoma Cells

  • Zheng, Lianhe;Zhang, Dianzhong;Zhang, Yunfei;Wen, Yanhua;Wang, Yucai
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migration. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.

t10,c12 Conjugated Linoleic Acid Upregulates Hepatic De Novo Lipogenesis and Triglyceride Synthesis via mTOR Pathway Activation

  • Go, Gwang-Woong;Oh, Sangnam;Park, Miri;Gang, Gyoungok;McLean, Danielle;Yang, Han-Sul;Song, Min-Ho;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1569-1576
    • /
    • 2013
  • In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However, the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid accumulation. It was found that treatment with t10,c12 CLA ($100{\mu}M$) for 72 h increased neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2-deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with consequent lipid accumulation in HepG2 cells.

Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway

  • Sang-Min Kim;Dong Yeol Kim;Jiwon Park;Young-Ah Moon;Inn-Oc Han
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory element-binding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis.

A CONJECTURE OF GROSS AND ZAGIER: CASE E(ℚ)tor ≅ ℤ/2ℤ OR ℤ/4ℤ

  • Dongho Byeon;Taekyung Kim;Donggeon Yhee
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1087-1107
    • /
    • 2023
  • Let E be an elliptic curve defined over ℚ of conductor N, c the Manin constant of E, and m the product of Tamagawa numbers of E at prime divisors of N. Let K be an imaginary quadratic field where all prime divisors of N split in K, PK the Heegner point in E(K), and III(E/K) the Shafarevich-Tate group of E over K. Let 2uK be the number of roots of unity contained in K. Gross and Zagier conjectured that if PK has infinite order in E(K), then the integer c · m · uK · |III(E/K)| $\frac{1}{2}$ is divisible by |E(ℚ)tor|. In this paper, we prove that this conjecture is true if E(ℚ)tor ≅ ℤ/2ℤ or ℤ/4ℤ except for two explicit families of curves. Further, we show these exceptions can be removed under Stein-Watkins conjecture.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Analysis of corrugated board panels under compression load

  • Biancolini, M.E.;Brutti, C.;Porziani, S.
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This paper is focused on the buckling and post buckling behaviour of rectangular corrugated board panels simply supported and subjected to compression load. The aim of the work is to understand the failure mechanism of investigated structure in order to quantify the effect of design parameters on the strength of a panel of given geometry. Two numerical models were developed adopting the finite element method. In the first one the corrugated board is represented by means of shell elements adopting an equivalent material, in the second the local structure is described in full detail modelling both straight and corrugated layers by means of shell elements and representing the connection between layers by special interface elements. The model correctness was checked by the comparison between out of plane central displacement predicted by the models and the experimental values found in literature. For the same case the effect of panel planarity error was evaluated. Finally a parametric analysis to investigate the effect of design parameters was carried out.

Apoptosis-Induced Effects of Extract from Artemisia annua Linné by Modulating Akt/mTOR/GSK-3β Signal Pathway in AGS Human Gastric Carcinoma Cells (AGS 인체 위암 세포에서 Akt/mTOR/GSK-3β 신호경로 조절을 통한 개똥쑥 추출물의 Apoptosis 유도 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Kim, Sang-Yong;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1257-1264
    • /
    • 2016
  • Extracts from Artemisia annua $Linn\acute{e}$ (AAE) have various functions (anti-malaria, anti-virus, and anti-oxidant). However, the mechanism of the effects of AAE is not well known. Thus, we determined the apoptotic effects of AAE in AGS human gastric carcinoma cells. In this study, we suggested that AAE may exert cancer cell apoptosis through the Akt/mammalian target of rapamycin (mTOR)/glycogen synthase kinase (GSK)-$3{\beta}$ signal pathway and mitochondria-mediated apoptotic proteins. Activation by Akt phosphorylation resulted in cell proliferation through phosphorylation of tuberous sclerosis complex 2 (TSC2), mTOR, and GSK-$3{\beta}$. Thus, de-phosphorylation of Akt inhibited cell proliferation and induced apoptosis through inhibition of Akt, mTOR, phosphorylation of GSK-$3{\beta}$ at serine9, and control of Bcl-2 family members. Inhibition of GSK-$3{\beta}$ attenuated loss of mitochondrial membrane potential and release of cytochrome C. Bax and pro-apoptotic proteins were activated by their translocation into mitochondria from the cytosol. Translocation of Bax induced outer membrane transmission and generated apoptosis through cytochrome C release and caspase activity. We also measured 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase assay, Hoechst 33342 staining, Annexin V-PI staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide staining, and Western blotting. Accordingly, our study showed that AAE treatment to AGS cells resulted in inhibition of Akt, TSC2, GSK-$3{\beta}$-phosphorylated, Bim, Bcl-2, and pro-caspase 3 as well as activation of Bax and Bak expression. These results indicate that AAE induced apoptosis via a mitochondrial event through regulation of the Akt/mTOR/GSK-$3{\beta}$ signaling pathways.