Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.9.091

Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration  

Kim, Lou W. (Department of Biological Sciences, Florida International University)
Publication Information
BMB Reports / v.50, no.9, 2017 , pp. 437-444 More about this Journal
Abstract
Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.
Keywords
Akt; B56; Chemotaxis; Dictyostelium; PP2A; TorC1; TorC2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Julien LA, Carriere A, Moreau J and Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30, 908-921   DOI
2 Chen CH, Shaikenov T, Peterson TR et al (2011) ER stress inhibits mTORC2 and Akt signaling through GSK-3betamediated phosphorylation of rictor. Sci Signal 4, ra10
3 Humphrey SJ, Yang G, Yang P et al (2013) Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab 17, 1009-1020   DOI
4 Liu P, Gan W, Inuzuka H et al (2013) Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol 15, 1340-1350   DOI
5 Meili R, Ellsworth C, Lee S, Reddy TB, Ma H and Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18, 2092-2105   DOI
6 Liao XH, Buggey J, Lee YK and Kimmel AR (2013) Chemoattractant stimulation of TORC2 is regulated by receptor/G protein-targeted inhibitory mechanisms that function upstream and independently of an essential GEF/Ras activation pathway in Dictyostelium. Mol Biol Cell 24, 2146-2155   DOI
7 Yagi M, Kantarci A, Iwata T et al (2009) PDK1 regulates chemotaxis in human neutrophils. J Dent Res 88, 1119-1124   DOI
8 Padmanabhan S, Mukhopadhyay A, Narasimhan SD, Tesz G, Czech MP and Tissenbaum HA (2009) A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939-951   DOI
9 Letourneux C, Rocher G and Porteu F (2006) B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25, 727-738   DOI
10 Rocher G, Letourneux C, Lenormand P and Porteu F (2007) Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem 282, 5468-5477   DOI
11 Rodgers JT, Vogel RO and Puigserver P (2011) Clk2 and $B56{\beta}$ mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Mol Cell 41, 471-479   DOI
12 Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP and Firtel RA (2010) A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell 18, 737-749   DOI
13 Swaney KF, Huang CH and Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39, 265-289   DOI
14 Liu L, Chen L, Chung J and Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27, 4998-5010   DOI
15 Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128   DOI
16 Le OT, Cho OY, Tran MH et al (2015) Phosphorylation of phosphatidylinositol 4-phosphate 5-kinase ${\gamma}$ by Akt regulates its interaction with talin and focal adhesion dynamics. Biochimica et Biophysica Acta 1853, 2432-2443   DOI
17 Sen B, Xie Z, Case N et al (2014) mTORC2 Regulates Mechanically Induced Cytoskeletal Reorganization and Lineage Selection in Marrow-Derived Mesenchymal Stem Cells. J Bone Miner Res 29, 78-89   DOI
18 Ravi A, Kaushik S, Ravichandran A, Pan CQ and Low BC (2015) Epidermal Growth Factor Activates the Rho GTPase-activating Protein (GAP) Deleted in Liver Cancer 1 via Focal Adhesion Kinase and Protein Phosphatase 2A. J Biol Chem 290, 4149-4162   DOI
19 Sato T, Ishii J, Ota Y, Sasaki E, Shibagaki Y and Hattori S (2016) Mammalian target of rapamycin (mTOR) complex 2 regulates filamin A-dependent focal adhesion dynamics and cell migration. Genes Cells 21, 579-593   DOI
20 Lamouille S and Derynck R (2011) Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-${\beta}$-induced epithelial-mesenchymal transition. Cells Tissues Organs 193, 8-22   DOI
21 Tsujioka M, Yumura S, Inouye K, Patel H, Ueda M and Yonemura S (2012) Talin couples the actomyosin cortex to the plasma membrane during rear retraction and cytokinesis. Proc Natl Acad Sci U S A 109, 12992-12997   DOI
22 Yan L, Mieulet V, Burgess D et al (2010) PP2AT613 Is an Inhibitor of MAP4K3 in Nutrient Signaling to mTOR. Molecular Cell 37, 633-642   DOI
23 Tomar A and Schlaepfer DD (2009) Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21, 676-683   DOI
24 Liu L, Luo Y, Chen L et al (2010) Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem 285, 38362-38373   DOI
25 Berven LA, Willard FS and Crouch MF (2004) Role of the p70(S6K) pathway in regulating the actin cytoskeleton and cell migration. Exp Cell Res 296, 183-195   DOI
26 Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB and Marks AR (1996) Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 98, 2277-2283   DOI
27 Sakakibara K, Liu B, Hollenbeck S and Kent KC (2005) Rapamycin inhibits fibronectin-induced migration of the human arterial smooth muscle line (E47) through the mammalian target of rapamycin. Am J Physiol Heart Circ Physiol 288, H2861-H2868   DOI
28 Wan X, Mendoza A, Khanna C and Helman LJ (2005) Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 65, 2406-2411   DOI
29 Attoub S, Noe V, Pirola L et al (2000) Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3-kinase-, rho-, and rac-dependent signaling pathways. FASEB J 14, 2329-2338   DOI
30 Wong AS, Roskelley CD, Pelech S, Miller D, Leung PC and Auersperg N (2004) Progressive changes in Metdependent signaling in a human ovarian surface epithelial model of malignant transformation. Exp Cell Res 299, 248-256   DOI
31 Liu L, Li F, Cardelli JA, Martin KA, Blenis J and Huang S (2006) Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25, 7029-7040   DOI
32 Zhou HY and Wong AS (2006) Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells. Endocrinology 147, 2557-2566   DOI
33 Maegawa K, Takii R, Ushimaru T and Kozaki A (2015) Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics 290, 2019-2030   DOI
34 Otterhag L, Gustavsson N, Alsterfjord M et al (2006) Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie 88, 11-21   DOI
35 Dobrenel T, Marchive C, Sormani R et al (2011) Regulation of plant growth and metabolism by the TOR kinase. Biochem Soc Trans 39, 477-481   DOI
36 Ahn CS, Han JA, Lee HS, Lee S and Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23, 185-209   DOI
37 Seshacharyulu P, Pandey P, Datta K and Batra SK (2013) Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18   DOI
38 Lillo C, Kataya AR, Heidari B et al (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant Cell Environ 37, 2631-2648   DOI
39 Mumby M (2007) PP2A: unveiling a reluctant tumor suppressor. Cell 130, 21-24   DOI
40 Rahikainen M, Pascual J, Alegre S, Durian G and Kangasjarvi S (2016) PP2A Phosphatase as a Regulator of ROS Signaling in Plants. Antioxidants (Basel) 5, pii: E8
41 Lee NS, Veeranki S, Kim B and Kim L (2008) The function of PP2A/B56 in non-metazoan multicellular development. Differentiation 76, 1104-1110   DOI
42 Sommer LM, Cho H, Choudhary M and Seeling JM (2015) Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits. Int J Mol Sci 16, 10134-10157   DOI
43 Eichhorn PJA, Creyghton MP and Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochimica et Biophysica Acta 1795, 1-15
44 Gutierrez-Caballero C, Cebollero LR and Pendas AM (2012) Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 28, 351-360   DOI
45 Kurimchak A and Grana X (2015) PP2A: more than a reset switch to activate pRB proteins during the cell cycle and in response to signaling cues. Cell Cycle 14, 18-30   DOI
46 Stamos JL and Weis WI (2013) The ${\beta}$-catenin destruction complex. Cold Spring Harb Perspect Biol 5, a007898   DOI
47 Janssens V and Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353(Pt 3), 417-439   DOI
48 Murphy MB, Levi SK and Egelhoff TT (1999) Molecular characterization and immunolocalization of Dictyostelium discoideum protein phosphatase 2A. FEBS Lett 456, 7-12   DOI
49 Rodriguez Pino M, Castillo B, Kim B and Kim LW (2015) PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis. Mol Biol Cell 26, 4347-4357   DOI
50 Jiang L, Stanevich V, Satyshur KA et al (2013) Structural basis of protein phosphatase 2A stable latency. Nat Commun 4, 1699   DOI
51 Di Como CJ and Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10, 1904-1916   DOI
52 Ogris E, Gibson DM and Pallas DC (1997) Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15, 911-917   DOI
53 Bryant JC, Westphal RS and Wadzinski BE (1999) Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J 339, 241-246   DOI
54 Hu X, Wu X, Xu J, Zhou J, Han X and Guo J (2009) Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci 10, 74   DOI
55 Hertz EP, Kruse T, Davey NE et al (2016) A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase. Mol Cell 63, 686-695   DOI
56 Hong K, Lou L, Gupta S, Ribeiro-Neto F and Altschuler DL (2008) A novel Epac-Rap-PP2A signaling module controls cAMP-dependent Akt regulation. J Biol Chem 283, 23129-23138   DOI
57 Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P and Nairn AC (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A 104, 2979-2984   DOI
58 Kirchhefer U, Heinick A, Konig S et al (2014) Protein phosphatase 2A is regulated by protein kinase $C{\alpha}(PKC{\alpha})$-dependent phosphorylation of its targeting subunit $B56{\alpha}$ at Ser41. J Biol Chem 289, 163-176   DOI
59 Wang J, Wang Z, Yu T et al (2016) Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein Cell 7, 516-526   DOI
60 Xu Z, Cetin B, Anger M et al (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell 35, 426-441   DOI
61 Funamoto S, Meili R, Lee S, Parry L and Firtel RA (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611-623   DOI
62 Durian G, Rahikainen M, Alegre S, Brosche M and Kangasjarvi S (2016) Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. Front Plant Sci 7, 812
63 Wen F, Wang J and Xing D (2012) A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis. Plant Cell Physiol 53, 1366-1379   DOI
64 Konert G, Rahikainen M, Trotta A et al (2015) Subunits $B^{\prime}{\gamma}$ and $B^{\prime}{\zeta}$ of protein phosphatase 2A regulate photooxidative stress responses and growth in Arabidopsis thaliana. Plant Cell Environ 38, 2641-2651   DOI
65 Jin L, Ham JH, Hage R et al (2016) Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathog 12, e1005609   DOI
66 Vernoud V, Horton AC, Yang Z and Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131, 1191-1208   DOI
67 Hussey PJ and Tijs Ketelaar T (2006) Control of the Actin Cytoskeleton in Plant Cell Growth. Annu Rev Plant Biol 57, 109-125   DOI
68 Khanna A, Lotfi P, Chavan AJ et al (2016) The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci Rep 6, 25823   DOI
69 Cai H, Das S, Kamimura Y, Long Y, Parent CA and Devreotes PN (2010) Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J Cell Biol 190, 233-245   DOI
70 Kamimura Y and Devreotes PN (2010) Phosphoinositidedependent protein kinase (PDK) activity regulates phosphatidylinositol 3,4,5-trisphosphate-dependent and -independent protein kinase B activation and chemotaxis. J Biol Chem 285, 7938-7946   DOI
71 Artemenko Y, Lampert TJ and Devreotes PN (2014) Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 71, 3711-3747   DOI
72 Devreotes P and Horwitz AR (2015) Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol 7, a005959   DOI
73 Liu L, Das S, Losert W and Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 19, 845-857   DOI
74 Diz-Munoz A, Thurley K, Chintamen S et al (2016) Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration. PLoS Biol 14, e1002474   DOI
75 Kuehn HS, Jung MY, Beaven MA, Metcalfe DD and Gilfillan AM (2011) Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 286, 391-402   DOI
76 Sasaki AT, Chun C, Takeda K and Firtel RA (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167, 505-518   DOI
77 Insall RH, Borleis J and Devreotes PN (1996) The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr Biol 6, 719-729   DOI
78 Lee S, Comer FI, Sasaki A et al (2005) TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell 16, 4572-4583   DOI
79 Kae H, Kortholt A, Rehmann H et al (2007) Cyclic AMP signalling in Dictyostelium: G-proteins activate separate Ras pathways using specific RasGEFs. EMBO Rep 8, 477-482   DOI
80 Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P and Devreotes PN (2008) PIP3-independent activation of TorC2 and PKB at the cell's leading edge mediates chemotaxis. Curr Biol 18, 1034-1043   DOI
81 Liu Y, Lacal J, Veltman DM et al (2016) A $G{\alpha}$-Stimulated RapGEF Is a Receptor-Proximal Regulator of Dictyostelium Chemotaxis. Dev Cell 37, 458-472   DOI
82 Chen MY, Long Y and Devreotes PN (1997) A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev 11, 3218-3231   DOI
83 He Y, Li D, Cook SL et al (2013) Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 24, 3369-3380   DOI
84 Agarwal NK, Chen CH, Cho H, Boulbes DR, Spooner E and Sarbassov DD (2013) Rictor regulates cell migration by suppressing RhoGDI2. Oncogene 32, 2521-2526   DOI
85 Zhang F, Zhang X, Li M et al (2010) mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res 70, 9360-9370   DOI
86 Xu Y, Lai E, Liu J et al (2013) IKK interacts with rictor and regulates mTORC2. Cell Signal 25, 2239-2245   DOI