1 |
Julien LA, Carriere A, Moreau J and Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30, 908-921
DOI
|
2 |
Chen CH, Shaikenov T, Peterson TR et al (2011) ER stress inhibits mTORC2 and Akt signaling through GSK-3betamediated phosphorylation of rictor. Sci Signal 4, ra10
|
3 |
Humphrey SJ, Yang G, Yang P et al (2013) Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab 17, 1009-1020
DOI
|
4 |
Liu P, Gan W, Inuzuka H et al (2013) Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol 15, 1340-1350
DOI
|
5 |
Meili R, Ellsworth C, Lee S, Reddy TB, Ma H and Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18, 2092-2105
DOI
|
6 |
Liao XH, Buggey J, Lee YK and Kimmel AR (2013) Chemoattractant stimulation of TORC2 is regulated by receptor/G protein-targeted inhibitory mechanisms that function upstream and independently of an essential GEF/Ras activation pathway in Dictyostelium. Mol Biol Cell 24, 2146-2155
DOI
|
7 |
Yagi M, Kantarci A, Iwata T et al (2009) PDK1 regulates chemotaxis in human neutrophils. J Dent Res 88, 1119-1124
DOI
|
8 |
Padmanabhan S, Mukhopadhyay A, Narasimhan SD, Tesz G, Czech MP and Tissenbaum HA (2009) A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939-951
DOI
|
9 |
Letourneux C, Rocher G and Porteu F (2006) B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25, 727-738
DOI
|
10 |
Rocher G, Letourneux C, Lenormand P and Porteu F (2007) Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem 282, 5468-5477
DOI
|
11 |
Rodgers JT, Vogel RO and Puigserver P (2011) Clk2 and mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Mol Cell 41, 471-479
DOI
|
12 |
Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP and Firtel RA (2010) A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell 18, 737-749
DOI
|
13 |
Swaney KF, Huang CH and Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 39, 265-289
DOI
|
14 |
Liu L, Chen L, Chung J and Huang S (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27, 4998-5010
DOI
|
15 |
Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128
DOI
|
16 |
Le OT, Cho OY, Tran MH et al (2015) Phosphorylation of phosphatidylinositol 4-phosphate 5-kinase by Akt regulates its interaction with talin and focal adhesion dynamics. Biochimica et Biophysica Acta 1853, 2432-2443
DOI
|
17 |
Sen B, Xie Z, Case N et al (2014) mTORC2 Regulates Mechanically Induced Cytoskeletal Reorganization and Lineage Selection in Marrow-Derived Mesenchymal Stem Cells. J Bone Miner Res 29, 78-89
DOI
|
18 |
Ravi A, Kaushik S, Ravichandran A, Pan CQ and Low BC (2015) Epidermal Growth Factor Activates the Rho GTPase-activating Protein (GAP) Deleted in Liver Cancer 1 via Focal Adhesion Kinase and Protein Phosphatase 2A. J Biol Chem 290, 4149-4162
DOI
|
19 |
Sato T, Ishii J, Ota Y, Sasaki E, Shibagaki Y and Hattori S (2016) Mammalian target of rapamycin (mTOR) complex 2 regulates filamin A-dependent focal adhesion dynamics and cell migration. Genes Cells 21, 579-593
DOI
|
20 |
Lamouille S and Derynck R (2011) Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor--induced epithelial-mesenchymal transition. Cells Tissues Organs 193, 8-22
DOI
|
21 |
Tsujioka M, Yumura S, Inouye K, Patel H, Ueda M and Yonemura S (2012) Talin couples the actomyosin cortex to the plasma membrane during rear retraction and cytokinesis. Proc Natl Acad Sci U S A 109, 12992-12997
DOI
|
22 |
Yan L, Mieulet V, Burgess D et al (2010) PP2AT613 Is an Inhibitor of MAP4K3 in Nutrient Signaling to mTOR. Molecular Cell 37, 633-642
DOI
|
23 |
Tomar A and Schlaepfer DD (2009) Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21, 676-683
DOI
|
24 |
Liu L, Luo Y, Chen L et al (2010) Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem 285, 38362-38373
DOI
|
25 |
Berven LA, Willard FS and Crouch MF (2004) Role of the p70(S6K) pathway in regulating the actin cytoskeleton and cell migration. Exp Cell Res 296, 183-195
DOI
|
26 |
Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB and Marks AR (1996) Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 98, 2277-2283
DOI
|
27 |
Sakakibara K, Liu B, Hollenbeck S and Kent KC (2005) Rapamycin inhibits fibronectin-induced migration of the human arterial smooth muscle line (E47) through the mammalian target of rapamycin. Am J Physiol Heart Circ Physiol 288, H2861-H2868
DOI
|
28 |
Wan X, Mendoza A, Khanna C and Helman LJ (2005) Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 65, 2406-2411
DOI
|
29 |
Attoub S, Noe V, Pirola L et al (2000) Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3-kinase-, rho-, and rac-dependent signaling pathways. FASEB J 14, 2329-2338
DOI
|
30 |
Wong AS, Roskelley CD, Pelech S, Miller D, Leung PC and Auersperg N (2004) Progressive changes in Metdependent signaling in a human ovarian surface epithelial model of malignant transformation. Exp Cell Res 299, 248-256
DOI
|
31 |
Liu L, Li F, Cardelli JA, Martin KA, Blenis J and Huang S (2006) Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25, 7029-7040
DOI
|
32 |
Zhou HY and Wong AS (2006) Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells. Endocrinology 147, 2557-2566
DOI
|
33 |
Maegawa K, Takii R, Ushimaru T and Kozaki A (2015) Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol Genet Genomics 290, 2019-2030
DOI
|
34 |
Otterhag L, Gustavsson N, Alsterfjord M et al (2006) Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie 88, 11-21
DOI
|
35 |
Dobrenel T, Marchive C, Sormani R et al (2011) Regulation of plant growth and metabolism by the TOR kinase. Biochem Soc Trans 39, 477-481
DOI
|
36 |
Ahn CS, Han JA, Lee HS, Lee S and Pai HS (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23, 185-209
DOI
|
37 |
Seshacharyulu P, Pandey P, Datta K and Batra SK (2013) Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18
DOI
|
38 |
Lillo C, Kataya AR, Heidari B et al (2014) Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. Plant Cell Environ 37, 2631-2648
DOI
|
39 |
Mumby M (2007) PP2A: unveiling a reluctant tumor suppressor. Cell 130, 21-24
DOI
|
40 |
Rahikainen M, Pascual J, Alegre S, Durian G and Kangasjarvi S (2016) PP2A Phosphatase as a Regulator of ROS Signaling in Plants. Antioxidants (Basel) 5, pii: E8
|
41 |
Lee NS, Veeranki S, Kim B and Kim L (2008) The function of PP2A/B56 in non-metazoan multicellular development. Differentiation 76, 1104-1110
DOI
|
42 |
Sommer LM, Cho H, Choudhary M and Seeling JM (2015) Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits. Int J Mol Sci 16, 10134-10157
DOI
|
43 |
Eichhorn PJA, Creyghton MP and Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochimica et Biophysica Acta 1795, 1-15
|
44 |
Gutierrez-Caballero C, Cebollero LR and Pendas AM (2012) Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 28, 351-360
DOI
|
45 |
Kurimchak A and Grana X (2015) PP2A: more than a reset switch to activate pRB proteins during the cell cycle and in response to signaling cues. Cell Cycle 14, 18-30
DOI
|
46 |
Stamos JL and Weis WI (2013) The -catenin destruction complex. Cold Spring Harb Perspect Biol 5, a007898
DOI
|
47 |
Janssens V and Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353(Pt 3), 417-439
DOI
|
48 |
Murphy MB, Levi SK and Egelhoff TT (1999) Molecular characterization and immunolocalization of Dictyostelium discoideum protein phosphatase 2A. FEBS Lett 456, 7-12
DOI
|
49 |
Rodriguez Pino M, Castillo B, Kim B and Kim LW (2015) PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis. Mol Biol Cell 26, 4347-4357
DOI
|
50 |
Jiang L, Stanevich V, Satyshur KA et al (2013) Structural basis of protein phosphatase 2A stable latency. Nat Commun 4, 1699
DOI
|
51 |
Di Como CJ and Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10, 1904-1916
DOI
|
52 |
Ogris E, Gibson DM and Pallas DC (1997) Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene 15, 911-917
DOI
|
53 |
Bryant JC, Westphal RS and Wadzinski BE (1999) Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J 339, 241-246
DOI
|
54 |
Hu X, Wu X, Xu J, Zhou J, Han X and Guo J (2009) Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC Neurosci 10, 74
DOI
|
55 |
Hertz EP, Kruse T, Davey NE et al (2016) A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase. Mol Cell 63, 686-695
DOI
|
56 |
Hong K, Lou L, Gupta S, Ribeiro-Neto F and Altschuler DL (2008) A novel Epac-Rap-PP2A signaling module controls cAMP-dependent Akt regulation. J Biol Chem 283, 23129-23138
DOI
|
57 |
Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P and Nairn AC (2007) Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A 104, 2979-2984
DOI
|
58 |
Kirchhefer U, Heinick A, Konig S et al (2014) Protein phosphatase 2A is regulated by protein kinase -dependent phosphorylation of its targeting subunit at Ser41. J Biol Chem 289, 163-176
DOI
|
59 |
Wang J, Wang Z, Yu T et al (2016) Crystal structure of a PP2A B56-BubR1 complex and its implications for PP2A substrate recruitment and localization. Protein Cell 7, 516-526
DOI
|
60 |
Xu Z, Cetin B, Anger M et al (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell 35, 426-441
DOI
|
61 |
Funamoto S, Meili R, Lee S, Parry L and Firtel RA (2002) Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611-623
DOI
|
62 |
Durian G, Rahikainen M, Alegre S, Brosche M and Kangasjarvi S (2016) Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants. Front Plant Sci 7, 812
|
63 |
Wen F, Wang J and Xing D (2012) A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis. Plant Cell Physiol 53, 1366-1379
DOI
|
64 |
Konert G, Rahikainen M, Trotta A et al (2015) Subunits and of protein phosphatase 2A regulate photooxidative stress responses and growth in Arabidopsis thaliana. Plant Cell Environ 38, 2641-2651
DOI
|
65 |
Jin L, Ham JH, Hage R et al (2016) Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathog 12, e1005609
DOI
|
66 |
Vernoud V, Horton AC, Yang Z and Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131, 1191-1208
DOI
|
67 |
Hussey PJ and Tijs Ketelaar T (2006) Control of the Actin Cytoskeleton in Plant Cell Growth. Annu Rev Plant Biol 57, 109-125
DOI
|
68 |
Khanna A, Lotfi P, Chavan AJ et al (2016) The small GTPases Ras and Rap1 bind to and control TORC2 activity. Sci Rep 6, 25823
DOI
|
69 |
Cai H, Das S, Kamimura Y, Long Y, Parent CA and Devreotes PN (2010) Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J Cell Biol 190, 233-245
DOI
|
70 |
Kamimura Y and Devreotes PN (2010) Phosphoinositidedependent protein kinase (PDK) activity regulates phosphatidylinositol 3,4,5-trisphosphate-dependent and -independent protein kinase B activation and chemotaxis. J Biol Chem 285, 7938-7946
DOI
|
71 |
Artemenko Y, Lampert TJ and Devreotes PN (2014) Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 71, 3711-3747
DOI
|
72 |
Devreotes P and Horwitz AR (2015) Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol 7, a005959
DOI
|
73 |
Liu L, Das S, Losert W and Parent CA (2010) mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 19, 845-857
DOI
|
74 |
Diz-Munoz A, Thurley K, Chintamen S et al (2016) Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration. PLoS Biol 14, e1002474
DOI
|
75 |
Kuehn HS, Jung MY, Beaven MA, Metcalfe DD and Gilfillan AM (2011) Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 286, 391-402
DOI
|
76 |
Sasaki AT, Chun C, Takeda K and Firtel RA (2004) Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 167, 505-518
DOI
|
77 |
Insall RH, Borleis J and Devreotes PN (1996) The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr Biol 6, 719-729
DOI
|
78 |
Lee S, Comer FI, Sasaki A et al (2005) TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell 16, 4572-4583
DOI
|
79 |
Kae H, Kortholt A, Rehmann H et al (2007) Cyclic AMP signalling in Dictyostelium: G-proteins activate separate Ras pathways using specific RasGEFs. EMBO Rep 8, 477-482
DOI
|
80 |
Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P and Devreotes PN (2008) PIP3-independent activation of TorC2 and PKB at the cell's leading edge mediates chemotaxis. Curr Biol 18, 1034-1043
DOI
|
81 |
Liu Y, Lacal J, Veltman DM et al (2016) A -Stimulated RapGEF Is a Receptor-Proximal Regulator of Dictyostelium Chemotaxis. Dev Cell 37, 458-472
DOI
|
82 |
Chen MY, Long Y and Devreotes PN (1997) A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev 11, 3218-3231
DOI
|
83 |
He Y, Li D, Cook SL et al (2013) Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell 24, 3369-3380
DOI
|
84 |
Agarwal NK, Chen CH, Cho H, Boulbes DR, Spooner E and Sarbassov DD (2013) Rictor regulates cell migration by suppressing RhoGDI2. Oncogene 32, 2521-2526
DOI
|
85 |
Zhang F, Zhang X, Li M et al (2010) mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res 70, 9360-9370
DOI
|
86 |
Xu Y, Lai E, Liu J et al (2013) IKK interacts with rictor and regulates mTORC2. Cell Signal 25, 2239-2245
DOI
|