• 제목/요약/키워드: Topology optimization design

검색결과 464건 처리시간 0.028초

10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용 (Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System)

  • 송창용;이강수;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권3호
    • /
    • pp.194-202
    • /
    • 2016
  • 본 연구에서는 10 MW급 부유식 파력-풍력 복합발전 시스템의 플랫폼 초기 개념설계를 위해 유한요소해석 기반 위상 최적화를 검토하였다. 실제 파력-풍력 복합발전 시스템 플랫폼의 위상최적화를 수행하기 전에 단순화된 구조설계 문제를 이용하여 효율적인 위상최적화 이론을 확인하고자 밀도법과 균질화설계법의 두 가지 위상최적화 이론을 적용하였다. 단순화된 설계 문제의 결과로부터 균질화설계법 이론을 파력-풍력 복합발전 시스템의 플랫폼 위상최적화에 적용하였다. 파력-풍력 복합발전 시스템의 플랫폼 개념설계를 위해서 유한요소해석 모델을 생성하고 설치해역의 해양환경하중을 고려하여 구조해석을 수행하였다. 설계파 및 조류와 같은 해양환경하중으로부터 기인하는 플랫폼 상의 압력과 계류삭의 인장력을 산출하기 위하여 동수력학 해석을 수행하였다. 구조해석을 위한 하중조건은 부유체 동수력학 해석으로부터의 결과와 파력-풍력 복합발전 시스템 중량을 고려하였고, 경계조건은 관성제거법을 사용하여 구현하였다. 밀도법 기반 파력-풍력 복합발전 시스템 플랫폼의 위상최적화 결과로부터 개념설계 단계에서 주요 구조부재의 배치방안을 제시하였다. 본 연구결과로부터 위상최적화는 부유식 파력-풍력 복합발전 시스템과 같은 새로운 형식의 해양구조물 개발에 있어서 주요 구조부재 배치의 개념설계에 대해 유용한 설계도구임을 확인하였다.

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.

위상최적설계를 이용한 CAD 모델 구축 (CAD Model Construction Using Topology Optimization)

  • 이동훈;민승재;서상호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.523-528
    • /
    • 2002
  • Topology optimization is widely accepted as a conceptual design tool for the product design. Since the resulted layout of the topology optimization is a kind of digital images represented by the density distribution, the seamless process is required to transform digital images to the CAD model for the practical use. In this paper, the general process to construct a CAD model is developed to apply for topology images based on elements. The node density and the morphology technique is adopted to extract boundary contour of the shape and remove the noise of images through erosion and dilation operation. The proposed method automatically generates point data sets of the geometric model. The process is integrated with Pro/Engineer, so that the engineer in practice can directly handle with curves or surface form digital images.

  • PDF

DVD 픽업보빈의 동특성 개선을 위한 병렬위상 최적설계법 응용 (Application of the Parallelized Topology Optimization for the Dynamic Characteristics Improvement of a DVD Pickup Bobbin)

  • 김태수;김재은;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.365-367
    • /
    • 2002
  • A parallelized topology optimization is applied to the design of a DVD-pickup bobbin, for which the design objective is to maximize the fundamental frequency within a given mass limit. Unlike the existing serial topology optimization, the present method can deal with a large number of design variables, and thus can yield practical and realistic results. The structural member-sizing filter is also employed to control the topological complexity of the optimized bobbin structure.

  • PDF

주어진 고유주파수를 갖는 구조물의 위상최적설계 (Topology Design of a Structure with a Specified Eigenfrequency)

  • 이종환;민승재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.392-397
    • /
    • 2001
  • Topology optimization is applied to determine the layout of a structure whose eigenfrequency coincides with a specified frequency. The topology optimization problem is formulated to minimize the difference between the structural frequency and a given frequency using the homogenization method and the modified optimality criteria method. It turns out that the value of a weighting factor in the updating scheme plays an important role to achieve both a suitable speed and a stable convergence of an algorithm. Unlike a constant weighting factor in previous works, it is suggested that a weight factor is varied during the iteration to control the amount of the frequency change. To substantiate the proposed approach two-dimensional structural design problems are presented and the resulted topology layouts for the specified eigenfrequency are compared to layouts for maximizing the corresponding eigenfrequency.

  • PDF

위상최적설계를 이용한 BLDC 모터의 자석 설계 (Magnet Design of BLDC Motor using Topology Optimization)

  • 박승규;강제남;왕세명;노정채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.831-833
    • /
    • 2003
  • BLDC (Blush-Less Direct Current) motors are widely used for machine tools and ODD (Optic Disc Drive). Topology Optimization is applied to the rotor of a BLDC motor to improve in efficiency and save money. Density method and design sensitivity are derived. The result of topology optimization shows better performance.

  • PDF

컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 - (Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect)

  • 이충용;민승재;유정훈
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

위상최적화를 이용한 압전형 마이크로 엑츄에이터의 구조설계 (Structural Design of Piezoelectric Microactuator Using Topology Optimization)

  • 채진식;민승재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1413-1418
    • /
    • 2003
  • In this study, the topology optimization is applied to the design of a piezoelectric microactuator satisfying the specific mean transduction ratio(MTR). The optimization problem is formulated to minimize the difference between the specified and the current mean transduction ratio. In order to analyze the response of the piezoelectric-structure coupled system, both the structural and the electric potential are considered in the finite element method. The optimization problem is resolved by using Sequential Linear Programming(SLP) and the results of test problems show that the design of a piezoelectric microactuator with specified mean transduction ratio can be obtained.

  • PDF

위상최적화를 이용한 압전형 마이크로 액추에이터의 구조설계 (Structural Design of Piezoelectric Microactuator Using Topology Optimization)

  • 채진식;민승재
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.206-213
    • /
    • 2004
  • In this study, the topology optimization is applied to the design of a piezoelectric microactuator satisfying the specific mean transduction ratio(MTR). The optimization problem is formulated to minimize the difference between the specified and the current mean transduction ratio. In order to analyze the response of the piezoelectric-structure coupled system, both the structural and the electric potential are considered in the finite element method. The optimization problem is resolved by using Sequential Linear Programming(SLP) and the results of test problems show that the design of a piezoelectric microactuator with the specified mean transduction ratio can be obtained.