• Title/Summary/Keyword: Topology Model

Search Result 610, Processing Time 0.034 seconds

A Study on Topology Optimization of Table Liner for Vertical Roller Mill using Homogenization Method (균질화법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 위상최적설계에 관한 연구)

  • 이동우;홍순혁;조석수;이선봉;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.113-122
    • /
    • 2003
  • Topology optimization is begun with layout optimization that is attributed to Rozvany and Prager of the 1960's. They claimed that structure was transformed into truss connecting all the nodes of finite element and optimized by control of its sectional modulus. But, this method is partial topology optimization. General layout optimal design appliable to continum structure was proposed by Bendsoe and Kikuchi in 1988. Topology optimization expresses material stiffness of structure into function of arbitrary variable. If this variable is 1, material exists but if this variable is 0, material doesn't exist. Therefore, topology optimization searches the distribution function of material stiffness for structure. There are a few researchs for simple engineering problem such as topology optimization of square plane structure or truss structure. So, This study applied to topology optimization of table liner for vertical roller mill that is the largest scale in the world. After table liner decreased by 20% of original weight, the structure analysis for first optimized model was performed.

Topology Optimization of Poroelastic Acoustic Foams for Absorption Coefficient Maximization (위상최적설계를 이용한 다공성 물질의 형상 최적화)

  • Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Lee, Joong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.934-937
    • /
    • 2006
  • This investigation presents a topology formulation to design optimal poroelastic acoustic foams to maximize absorbing ability. For successful formulation, a single set of equations based on Biot's theory is adopted and an appropriate material interpolation strategy is newly developed. Because there was no earlier attempt to solve poroelastic acoustic foam design problems in topology optimization setting, many challenging issues including modeling and interpolation must be addressed. First, the simulation accuracy by a proposed unified model encompassing acoustic air and poroelastic material was checked against analytical and numerical results. Then a material interpolation scheme yielding a distinct acoustic air-poroelastic material distribution was developed. Using the proposed model and interpolation scheme, the topology optimization of a two-dimensional poroelastic acoustic foam for maximizing its absorption coefficient was carried out. Numerical results show that the absorption capacity of an optimized foam layout considerably increases in comparison with a nominal foam layout.

  • PDF

Delivering IPTV Service over a Virtual Network: A Study on Virtual Network Topology

  • Song, Biao;Hassan, Mohammad Mehedi;Huh, Eui-Nam
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.319-335
    • /
    • 2012
  • In this study, we design an applicable model enabling internet protocol television (IPTV) service providers to use a virtual network (VN) for IPTV service delivery. The model addresses the guaranteed service delivery, cost effectiveness, flexible control, and scalable network infrastructure limitations of backbone or IP overlay-based content networks. There are two major challenges involved in this research: i) The design of an efficient, cost effective, and reliable virtual network topology (VNT) for IPTV service delivery and the handling of a VN allocation failure by infrastructure providers (InPs) and ii) the proper approach to reduce the cost of VNT recontruction and reallocation caused by VNT allocation failure. Therefore, in this study, we design a more reliable virtual network topology for solving a single virtual node, virtual link, or video server failure. We develop a novel optimization objective and an efficient VN construction algorithm for building the proposed topology. In addition, we address the VN allocation failure problem by proposing VNT decomposition and reconstruction algorithms. Various simulations are conducted to verify the effectiveness of the proposed VNT, as well as that of the associated construction, decomposition, and reconstruction algorithms in terms of reliability and efficiency. The simulation results are compared with the findings of existing works, and an improvement in performance is observed.

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

Prediction of Transmembrane Protein Topology Using Position-specific Modeling of Context-dependent Structural Regions

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.683-693
    • /
    • 2005
  • This paper presents a new transmembrane Protein topology prediction method which is an attempt to model the topological rules governing the topogenesis of transmembrane proteins. Context-dependent structural regions of the transmembrane protein are used as basic modeling units in order to effectively represent their topogenic roles during transmembrane protein assembly. These modeling units are modeled by means of a tied-state hidden Markov model, which can express the position-specific effect of amino acids during ransmembrane protein assembly. The performance of prediction improves with these modeling approaches. In particular, marked improvement of orientation prediction shows the validity of the proposed modeling. The proposed method is available at http://bioroutine.com/TRAPTOP.

  • PDF

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

An Energy-Efficient Self-organizing Hierarchical Sensor Network Model for Vehicle Approach Warning Systems (VAWS) (차량 접근 경고 시스템을 위한 에너지 효율적 자가 구성 센서 네트워크 모델)

  • Shin, Hong-Hyul;Lee, Hyuk-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.118-129
    • /
    • 2008
  • This paper describes an IEEE 802.15.4-based hierarchical sensor network model for a VAWS(Vehicle Approach Warning System) which provides the drivers of vehicles approaching a sharp turn with the information about vehicles approaching the same turn from the opposite end. In the proposed network model, a tree-structured topology, that can prolong the lifetime of network is formed in a self-organizing manner by a topology control protocol. A simple but efficient routing protocol, that creates and maintains routing tables based on the network topology organized by the topology control protocol, transports data packets generated from the sensor nodes to the base station which then forwards it to a display processor. These protocols are designed as a network layer extension to the IEEE 802.15.4 MAC. In the simulation, which models a scenario with a sharp turn, it is shown that the proposed network model achieves a high-level performance in terms of both energy efficiency and throughput simultaneously.

  • PDF

Implementation of persistent identification of topological entities based on macro-parametrics approach

  • Farjana, Shahjadi Hisan;Han, Soonhung;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.161-177
    • /
    • 2016
  • In history based parametric CAD modeling systems, persistent identification of the topological entities after design modification is mandatory to keep the design intent by recording model creation history and modification history. Persistent identification of geometric and topological entities is necessary in the product design phase as well as in the re-evaluation stage. For the identification, entities should be named first according to the methodology which will be applicable for all the entities unconditionally. After successive feature operations on a part body, topology based persistent identification mechanism generates ambiguity problem that usually stems from topology splitting and topology merging. Solving the ambiguity problem needs a complex method which is a combination of topology and geometry. Topology is used to assign the basic name to the entities. And geometry is used for the ambiguity solving between the entities. In the macro parametrics approach of iCAD lab of KAIST a topology based persistent identification mechanism is applied which will solve the ambiguity problem arising from topology splitting and also in case of topology merging. Here, a method is proposed where no geometry comparison is necessary for topology merging. The present research is focused on the enhancement of the persistent identification schema for the support of ambiguity problem especially of topology splitting problem and topology merging problem. It also focused on basic naming of pattern features.

Muffler Design Using a Topology Optimization Method (위상 최적화 기법을 이용한 머플러 설계)

  • Lee, Jin-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1085-1089
    • /
    • 2007
  • An acoustic topology optimization method is developed to optimize the acoustic attenuation capability of a muffler. The transmission loss of the muffler is calculated by using the three-point method based on finite element analysis. Each element of the finite element model is assumed to have the variable acoustic properties, which are penalized by a carefully-selected interpolation function to yield clear expansion chamber shapes at the end of topology optimization. The objective of the acoustic topology optimization problem formulated in this work is to maximize the transmission loss at a target frequency. The transmission loss value at a deep frequency of a nominal muffler configuration can be dramatically increased by the proposed optimization method. Optimal muffler configurations are also obtained for other frequencies.

  • PDF

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.