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Prediction of Transmembrane Protein Topology Using
Position-specific Modeling of Context-dependent
Structural Regions

Sang-Mun Chil)

Abstract

This paper presents a new transmembrane protein topology prediction
method which is an attempt to model the topological rules governing the
topogenesis of transmembrane proteins. Context—-dependent structural
regions of the transmembrane protein are used as basic modeling units in
order to effectively represent their topogenic roles during transmembrane
protein assembly. These modeling units are modeled by means of a
tied-state hidden Markov model, which can express the position-specific
effect of amino acids during transmembrane protein assembly. The
performance of prediction improves with these modeling approaches. In
particular, marked improvement of orientation prediction shows the validity
of the proposed modeling. The proposed method is available at
http://bioroutine.com/TRAPTOP.
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1. Introduction

Many researches have been performed on the prediction of transmembrane
protein (TMP) topology from amino acid sequence alone. The accuracy of these
prediction methods can improve more when the methods are guided by a deeper
understanding of TMP assembly mechanisms. Recently, much progress has been
made toward understanding the important details of how the machinery of
membrane protein assembly works (Higy et al, 2004, White and Heijne, 2004).
These papers explain that the topogenesis of transmembrane proteins, 1. e.
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translocation and insertion of proteins into the membrane, is governed by the
charged residues and hydrophobicity of the membrane spanning regions. But, many
topogenic rules found for TMP assembly have not been effectively exploited in
current prediction methods.

HMM (hidden Markov model)-based approaches currently give the best
performance (Moller et al., 2001; Chen et al, 2002; Arai et al, 2004). The
increasing number of reliable membrane protein structural data makes the
HMM-based procedures more promising approaches because these methods use
structural data for training the prediction methods (Jones et al., 1994; Tusnady and
Simon 1998, Krogh et al., 2001). But, comparison results showed that only around
50% of membrane proteins was predicted with correct topology for the best
methods (Mboller et al., 2001; Chen et al., 2002; Arai et al., 2004).

One of the reasons for the low prediction rates of current HMM-based method
is that the topogenic determinants of TMP assembly are not well modeled in
current HMM-based methods. Current HMM-based methods use no
context—-dependent modeling units. Thus, they are lack of the modeling for unique
topogenic role of each context-dependent structural region such as the first loops,
intermediate loops, and the last loops. Also, current HMM-based method use
shared probability for modeling structural regions, ie. every state in a modeling
unit is tied. This tying cannot represent changing properties of amino acids inside
modeling regions. But, experimental analysis of membrane proteins has shown that
the position-specific distribution of amino acids is topogenically crucial, and the
amino acid distributions in membrane proteins have different characteristic biases
with the position of each structural part.

The present work makes a HMM structure suitable for incorporating topogenic
rules such as the positive-inside rule, the hydrophobicity of membrane spanning
region (MSR), folding properties of N-terminal segment, and the length of
polypeptide. To model these topogenic determinants effectively, structural regions
in different context are defined by separate modeling units. Multiple states with
state-dependent probabilities are used for modeling this changing amino acids
distribution with the position of amino acids in each structural part. Since the
increased number of parameters by using multiple states needs more data for
parameter estimation, the present work tied states to reconcile the detail modeling
with the requirement to have enough data.

2. Position-specific Modeling of Transmembrane Proteins

2.1 Definition of Context-dependent Structural Regions

This work defines context—-dependent structural regions and uses multiple states
with state-dependent probabilities in order to effectively express the following
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topogenic determinants for TMP assembly : (a) charged residues flanking the
hydrophobic core of amino acid sequence, (b) hydrophobicity of signal sequence,
(c) folding properties of N-terminal segment (Higy et al., 2004, White and Heijne,
2004; Goder and Spiess, 2001).

Charged residues affect the orientation of the first hydrophobic sequence, signal
sequence, which plays an important role in protein topogenesis by orienting itself
in the translocon and the membrane (Goder and Spiess, 2003; Goder et al., 2004).
Internal transmembrane domains also follow the charge rule, although less
stringently than the most N-terminal signal. Insertion of positive charge residues
into short exoplasmic loops of model proteins caused individual hydrophobic
domains not to insert at all, showing that internal charges can be topogenically
active (Gafvelin et al, 997). Furthermore, charged residues have position—specific
effects on N-tail translocation ; the C-terminal end of N-terminal tail is more
critical for translocation than central and N-terminal regions (Whitley et al., 1995)
; the effect on helical hairpin formation of C-terminally flanking Lys and Asp
residues decreases with the distance from the hydrophobic core of amino acid
sequence (Hermansson et al., 2001). To effectively model these position—specific
effects, this work defines new modeling units, context-dependent units. A
context-dependent unit is a modeling unit in which the same structural region is
defined as separate modeling units if the region has different left and right
context. For example, the cytoplasmic loops are classified to three different
modeling units depending on the context of the loops : (a) the first N-tail
cytoplasmic loop, _i_M, has no structural region in the left but a MSR in the right
when the amino acid sequence is read from N-terminus to C-terminus, (b)
cytoplasmic loop between transmembrane helices, M_i_M, has a MSR in the left
and right, (c) the last cytoplasmic loop, M_i_ has a MSR in the left but no
structural region in the right. Similarly, context—-dependent outer membrane loops,
_o_M, M_o_M, M_o_, are defined. The context-dependent units make it easy to
determine the position of amino acids that are in close proximity to the MSR -
C-terminal end for the first loop, N-terminal end for the last loop, and both ends
for intermembrane loops, while this proximity cannot be determined using a
common modeling unit for different context in current prediction methods. In
addition to the advantage in modeling position-specific effect, the
context—dependent unit can separately represent the unique topogenic role of the
first loop, loop between MSRs, and the last loop. A multiple state HMM with
state-dependent probabilities is used to model these context-dependent units for
the representation of the position-specific effect. This HMM structure will be
described in the next section.

Hydrophobicity of the signal sequence is the another topogenic determinant. The
natural direction of movement of a nascent chain of TMPs is for N-terminus to
move from cytoplasm toward exoplasm. Driven by a local electrical potential, the
signal sequence may invert its orientation and translocate the C-terminal sequence.
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Increased hydrophobicity slows down inversion by stabilizing the initial bound
state (Goder and Spiess, 2003). It has been proposed that a hydrophobicity
gradient within the apolar core of the signal affects orientation, rather than the
overall hydrophobicity. The more hydrophobic end of the signal sequence has been
found to be more efficiently translocated (Harley et al, 1998). Another
position-specific feature of amino acid distribution is that there is a distinct
center-to—end heterogeneity in the distribution of apolar amino acids, with the
aromatic residues F, Y, and W concentrated at the ends and the aliphatic residues
L, I, and V more often found near the center (Heijne, 1994). For these reasons,
the modeling unit for the signal sequence and MSR should be capable of
representing the position—specific heterogeneity in the distribution of amino acids.
Thus, this work represents MSRs with a multiple state HMM for the use of the
position—specific modeling.

Folding of sequences N-terminal to the internal signal sequence may sterically
prevent translocation of the N-terminus irrespective of charge distribution (Goder
and Spiess, 2003). A polypeptide chain needs to be unfolded for translocation and
that the folding properties of the N-terminal domain influence protein orientation.
Thus, the structural regions related with these properties should be treated
differently from the other non-related regions in order to incorporate this
properties in the model. Since the present work uses context-dependent modeling
units, the first loop model is capable of containing this principle implicitly. This is
an another need for the context-dependent units. The topologies generated by the
same signal sequence seem to depend on the length of C-terminal loop next to
the signal sequence, with predominantly N-terminal translocation for very short
proteins and reaching a maximum of “55% C-terminal translocation for
polypeptides of ~300 amino acids or more (Goder and Spiess, 2003). As the
polypeptide grows longer, the signal sequence inverts its orientation driven by a
local electrical potential acting on the flanking charges. Experiments showed that
topology actually depended on the time of translation rather than on the length of
the polypeptide (Goder and Spiess, 2003). Since the time of translation depends on
various biological conditions, it is impossible to know the time of translation from
amino acid sequence alone. Thus, the present work makes two independent model
for each short and long loop instead of using the time of translation.

2.2 HMM Structures for Position-specific Modeling

A HMM can have suitable structures for position-specific modeling of the
context-dependent structural regions. The HMM is a Markov chain where the
output observation is a random variable generated according to an output
probabilistic function associated with each state (Durbin et al, 1998). The present
work uses multiple states with state-dependent transition and output probabilities
in order to model the position-specific statistical properties of structural part,
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whereas a common output distribution for every state of modeling regions has
been used in the previous HMM based methods (Jones et al., 1994; Tusnady and
Simon 1998, Krogh et al., 2001).

Since context-dependent structural regions are modeled by state-dependent
output probability in this work, there are large number of parameters to be
estimated. These large number of parameters need enough data for estimation. For
alleviating insufficient data and robust estimation of probabilities, parts of the
states are tied. The tied-states are made to share output probabilities. Figure 1
shows example HMM structures of context-dependent units, where, _i_M and
M_i_M are the first and intermembrane loops in cytoplasm, M_o_M and M_o_ the
intermembrane and last loops in non-cytoplasm, i_M_o the MSR from cytoplasm
to non-cytoplasm, and i_M_o the MSR from non-cytoplasm to cytoplasm. The
states in the same gray rectangle are tied. For the detail modeling of the states
near MSR, smaller number of states are tied near MSR than far from MSR. Since
the first loops can be preceded by signal sequence, N-terminal end can be close
to MSR. For this reason, N-terminal end of the first loops are tied with small
number of states. The shared probabilities are estimated from the amino acid
sequences which belong to the same tied-state in estimation stage. The detail
configures of the HMM structure for each modeling unit are presented in results
and discussion.
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Figure 1. HMM structures for context-dependent units.
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3. Prediction Experiments
3.1 Data Sets and Evaluation Criteria

To benchmark the performance of transmembrane protein prediction methods, it
1S necessary to use a test set of sequences with experimentally confirmed
transmembrane regions. A data set (Moller et al., 2000) was downloaded from
ftp://ftp.ebi.ac.uk/ databases/testsets/transmembrane. This test set contains 188
proteins with 833 MSRs that have been determined from either their elucidated
structures or by fusion experiments. The present work will call this data set
MbollerDB. Another data set, TMPDB\ alpha\_non-redundant(Ikeda et al., 2003),
was downloaded from ftp://bioinfo.si .hirosaki-u.ac.jp/TMPDB. The present work
will call this data set TMPDB. This data set is composed of 138 prokaryotic and
93 eukaryotic sequences with experimentally characterized topology information.
These two data sets have 115 proteins in common. Some data with inconsistent
annotation (amino acids, orientation and MSR position) were made to have the
annotation in (Mboller et al, 2000) before prediction experiments. Although
mitochondrial matrix and intermembrane are respectively regarded as an outer and
inner membrane in TMPDB, they are regarded reversely in this work following
general classification.

To examine the performance of our methods, the rate of correct topology
(TOPOLOGY) was mainly used and following accuracies were used additionally -
(a) All MSRs (MSR) : the percentage of predicted proteins whose all MSRs are
found correctly, (b) Sidedness (SIDE): the percentage of the correct sidedness of
the protein’s membrane integration when all MSRs were found correctly, (c)
Specificity (SP): the percentage of correctly predicted MSRs over the predicted
MSRs, (d) Sensitivity (SE): the percentage of correctly predicted MSRs over the
true MSRs. For an MSR to be evaluated as correct, two evaluation rules were
adopted in the present work. The first rule is that the MSR must share at least
nine residues with the reference annotation’s MSR (Mboller et al., 2001). This rule
is used for Table 1 and Table 3 to compare with other methods. Another rule is
that the center position of predicted MSR coincided within 11 residues with that
of MSR in the actual data (Arai et al., 2004), which is used in Figure 2.

3.2 Prediction of Transmembrane Protein Topology

To show the effectiveness of the proposed modeling units defined in 2.1, the
prediction performance of context-independent unit with no position-specific
modeling is compared with the proposed modeling units. Table 1 shows the
performance of the proposed modeling on MollerDB consisting 188 proteins with
883 MSRs. Every method in Table 1 adopts length-dependent models for every
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modeling unit. Outer loops of lengths up to 15 (half of the total outer loops) are
modeled with 3 state HMM, while the outer loops of lengths larger than 16 are
modeled with 16 state HMM. Similarly, 3 state HMM is used or inner loops of
lengths up to 19 (half of the total inner loops), 20 state HMM for inner loops of
lengths larger than 20, 12 state HMM for membrane helices of lengths up to 20
(half of the total membrane helices), 21 state HMM for membrane helices of
lengths larger than 21. Since the use of state-dependent output probabilities and
length-dependent models increases the number of parameters to be estimated than
the other HMM-based methods, MollerDB and TMPDB are used as train set.
CITS (Context-Independent Tied-State) uses context-independent modeling units -
inner loop, membrane helix, and outer loop and every state of the modeling units
is tied. This method is very similar to the previous HMM-based methods in that
it ties every state in a modeling unit and it doesn’t use context-dependent units.
Thus, CITS can model neither the topogenic effect of context-dependent structural
regions, nor position—-specific heterogeneity in the distribution of amino acids in
structural  regions. CDMS  (Context-Dependent  Multiple  States))  uses
context-dependent units : (a) the first loop, intermembrane loop, and the last loop
for each cytoplasmic and exoplasmic loop, (b) membrane helix from cytoplasm to
exoplasm and from exoplasm to cytoplasm. CDMS adopts state—dependent output
probabilities in order to model the changing distribution of amino acids with the
position of amino acid. The proposed method, TRAPTOP (TRansmembrane Protein
TOpology Prediction), uses the same context-dependent modeling units and
multiple state HMM that were adopted in CDMS. But, the states are tied for the
robust parameter estimation. Details of state-tying of the TRAPTOP are described
in Figure 1 and Table 2. Explicit modeling of position—specific effect gives
improved performance as can be seen in Table 1. TRAPTOP can predicts topology
with 68% accuracy and gives marked improvement of correct sidedness 949.
When the same test set MollerDB was used in the evaluation test (Mboller et al.,
2001), prediction accuracies of topology of TMHMM (Krogh et al., 2001),
MEMSAT 1.5 (Jones et al., 1994), and HMMTOP (Tusnady and Simon 1998) were
47%, 41% and 369, respectively. The MSR of TMHMM, MEMSAT 1.5, and
HMMTOP were 68%, 53%, and 449, respectively. Since training data differ from
method to method, the comparison cannot be considered strict. But, the tendency
of improved orientation prediction of TRAPTOP can be seen.

Table 1. Prediction performance of the proposed method (%).

Methods | TOPOLOGY MSR SIDE SP SE
CITS 56 64 33 90 95
CDMS 72 73 93 92 96
TRAPTOP 68 72 94 92 95
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Table 2. Configuration of state-tying for TRATOP

Context-dependent unit Tied states

M [1:5],[6:15],[16:20]
M_i_M [1:31,[4:71,[8:131,[14:171,[18:20]
M_i_ [1:4],[5:10],[11:20]
oM [1:4][5:12],[13:16]
M_o_ M [1:2],[3:5],[6:11],[12:14],[15:16]
M_o_ [1:3],[4:8],[9:16]

short i_M_o and o_M_i [1:31,[4:6],[7:9],[10:12]

long i_M_o and o_M_i [1:5],[6:101,[11:15],[16:21]

Arabic numbers in brackets mean the state numbers of HMMs shown in Figure
1, and [s:e] represents that all states from state s to state e are tied. Every state
is tied in all three-state HMMSs, which are the short model of loops.

Table 3. Prediction performance for independent testing data (%).

Methods | TOPOLOGY MSR SIDE SP SE
CDMS 50 57 38 87 90
TRAPTOP 57 65 33 90 91

Table 3 presents the prediction performance for proteins that were not used for
training. CDMS and TRAPTOP used the cross-validation test. Union of MollerDB
and TMPDB (304 proteins with 1477 MSRs) is partitioned into ten subsets
possessing roughly equal numbers of proteins, and each group is tested after
training on remaining nine subsets. Since the cross—validation result depends on
the partition of database, 20 independent tests were performed with random
partition of the database. CDMS has much more parameters than other method,
which causes the parameter estimation unstable because of the insufficiency of
training data. The performance of CDMS degrades rapidly when testing data are
not similar to training data as can be seen in Table 3, while the performance
degradation of TRATOP is rather mild because it ties states for the robust
parameter estimation. The performance of TMHMM 2.0, MEMSAT 15 and
HMMTOP with independent testing data were lower than 37% in TOPOLOGY
and lower than 60% in MSR in the evaluation test (Moéller et al., 2001). Since the
training and testing data differ from method to method, the results cannot be
compared directly. But, the topology prediction performance of TRAPTOP can be
considered higher than the other methods since all of the methods used
independent test set.

When the test set TMPDB consisting of 231 proteins with 1156 MSRs was used
in the test (Arai et al.,, 2004), the performance of TMHMM 2.0, MEMSAT 1.5 and
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HMMTOP were lower than 54.5% in TOPOLOGY and lower than 64.1% in MSR.
The performance of methods in the test (Arai et al., 2004) is reverse to the
results in the evaluation test (Moller et al., 2001). HMMTOP becomes the best
method in the test (Arai et al., 2004), while it was the worst among the three
methods in the evaluation test (Moller et al., 2001). This is because the train and
test data of each method is not the same. Figure 2 shows the performance of
TRAPTOP which has varying number of test data which are contained in training
data. TMPDB and MollerDB were respectively test and train set in Figure 2. Part
of TMPDB data were randomly selected and inserted to training data. This
procedure was repeated 20 times for each ratio between the number of test data
which are contained in training data and the number of test data. Since half of
TMPDB is already contained in MollerDB, the ratio is 0.5 when ModllerDB is
training set. As can be seen in Figure 2, the prediction accuracies improve with
increasing ratio. TRAPTOP consistently outperforms the other methods in the test
(Arai et al, 2004) between the ratio 0.5 and 1. When the independent test data
were used by using cross validation in Table 3, the performance of the proposed
method slightly better than the other methods in the test (Arai et al., 2004).
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Figure 2. Accuracy of TRAPTOP for different training set.

4. Conclusion

For the effective topology prediction, the modeling unit should be both accurate
and trainable; it accurately represents the topogenic role of each structural region,
and it has enough data to train the parameters of itself. Although
context—-dependent units used for

TRAPTOP are accurate and representative, they are less trainable because the
position—specific modeling increases the number of parameters to be estimated. To
have the advantage of detailed modeling using the large number of parameters,
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robust estimation is required. While tied-state HMM alleviates the problem of
insufficient data in the present work, more efficient technique for robust estimation
should be developed.

Like the time of translation whose information is not contained in amino acid
sequence, topology prediction needs another non—sequence information, for example,
physical, and biological information related to the biological assembly in natural
lipid bilayer milieu. Consequently, it is impossible to completely predict the
topology of TMPs solely from amino acid sequence. More study is needed to what
other information should be contained together with sequence.

In conclusions, the proposed method performs better than the other HMM based
methods for the prediction of TMP topology. In particular, the marked
improvement of sidedness determination is obtained by including position-specific
modeling of context-dependent structural regions and incorporating grammar into
the search stage for probable membrane protein topology. The proposed method
has used multiple state HMM possessing their own probabilities in order to model
the position-specific heterogeneity in the distribution of amino acids within
structural regions while an identical distribution has been used in other HMM
based methods. Also, states have been tied for the robust estimation of HMM
parameters. The TRAPTOP is available as a prediction server at
http://bioroutine.com/TRAPTOP. There is also pointer to the data used in this
work.
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