• Title/Summary/Keyword: Topological synthesis

Search Result 9, Processing Time 0.029 seconds

Topological phase transition according to internal strain in few layer Bi2Se3 thin film grown via a self-organized ordering process

  • Kim, Tae-Hyeon;Park, Han-Beom;Jeong, Gwang-Sik;Chae, Jae-Min;Hwang, Su-Bin;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.272.1-272.1
    • /
    • 2016
  • In a three-dimensional topological insulator Bi2Se3, a stress control for band gap manipulation was predicted but no systematic investigation has been performed yet due to the requirement of large external stress. We report herein on the strain-dependent results for Bi2Se3 films of various thicknesses that are grown via a self-organized ordering process. Using small angle X-ray scattering and Raman spectroscopy, the changes of d-spacings in the crystal structure and phonon vibration shifts resulted from stress are clearly observed when the film thickness is below ten quintuple layers. From the UV photoemission/inverse photoemission spectroscopy (UPS/IPES) results and ab initio calculations, significant changes of the Fermi level and band gap were observed. The deformed band structure also exhibits a Van Hove singularity at specific energies in the UV absorption experiment and ab initio calculations. Our results, including the synthesis of a strained ultrathin topological insulator, suggest a new direction for electronic and spintronic applications for the future.

  • PDF

Clarification about Component Mode Synthesis Methods for Substructures with Physical Flexible Interfaces

  • Ohayon, R.;Soize, C.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • The objective of the paper is to clarify a methodology based on the use of the existing component mode synthesis methods for the case of two damped substructures which are coupled through a linking viscoelastic flexible substructure and for which the structural modes with free geometrical interface are used for each main substructure. The proposed methodology corresponds to a convenient alternative to the direct use either of the Craig-Bampton method applied to the three substructures (using the fixed geometric interface modes) or of the flexibility residual approaches initiated by MacNeal (using the free geometric interface modes). In opposite to a geometrical interface which is a topological interface on which there is a direct linkage between the degrees of freedom of substructures, we consider a physical flexible interface which exists in certain present technologies and for which the general framework linear viscoelasticity is used and yields a frequency-dependent damping and stiffness matrices of the physical flexible interface.

A Study on the Spatial and Temporal Disjunctive Composition in the movie 'Kill Bill part 1/2' (영화 '킬빌(Kill Bill 1/2)'의 이접(異接)적인 시/공간 구성 연구)

  • Joh, Hahn
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.4
    • /
    • pp.57-67
    • /
    • 2012
  • The goal of this research is to study the spatial and temporal disjunctive composition of the movie 'Kill Bill part 1/2' and to lay a foundation for the future exploration of the topological relationship between contemporary architecture and cinema based upon the spatial and temporal multiplicity. Since the birth of cinema in early 20 century, architecture and cinema have a dynamic interdisciplinary relationship as Soviet director and theorist Sergei Eisenstein has called the Acropolis of Athens as 'one of the most ancient films' based upon its cinematic spatial sequence, and contemporary architect and theorist Bernard Tschumi has adopted cinematic montage technique to create his own disjunctive event-structure. As french philosopher Gilles Deleuze has traced the cinematic version of his 'disjunctive synthesis' from Eisentein's 'dialectic montage', Deleuzian 'disjunctive synthesis' can be discovered not only from the work and theory of Bernard Tschumi and Rem Koolhaas, but also from the 'Kill Bill's disjunctive composition where the heterogeneous spatial images and temporal images are under continuous interaction to create rhizomatic relationship between the cinema and viewers.

  • PDF

An Efficient Topology/Parameter Control in Evolutionary Design for Multi-domain Engineering Systems

  • Seo, Ki-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.108-113
    • /
    • 2005
  • This paper suggests a control method for an efficient topology/parameter evolution in a bond graph-based GP design framework that automatically synthesizes designs for multi-domain, lumped parameter dynamic systems. We adopt a hierarchical breeding control mechanism with fitness-level-dependent differences to obtain better balancing of topology/parameter search - biased toward topological changes at low fitness levels, and toward parameter changes at high fitness levels. As a testbed for this approach in bond graph synthesis, an eigenvalue assignment problem, which is to find bond graph models exhibiting minimal distance errors from target sets of eigenvalues, was tested and showed improved performance for various sets of eigenvalues.

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF

A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process

  • Byon, Hye-Ryung;Lim, Hyun-Seob;Song, Hyun-Jae;Choi, Hee-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2056-2060
    • /
    • 2007
  • A successful combination of “oxygen-assisted chemical vapor deposition (CVD) process” and Co catalyst nanoparticles to grow highly pure single walled carbon nanotubes (SWNTs) was demonstrated. Recently, it was reported that addition of small amounts of oxygen during CVD process dramatically increased the purity and yield of carbon nanotubes. However, this strategy could not be applied for discrete Fe nanoparticle catalysts from which appropriate yields of SWNTs could be grown directly on solid substrates, and fabricated into field effect transistors (FETs) quite efficiently. The main reason for this failure is due to the carbothermal reduction which results in SiO2 nanotrench formation. We found that the oxygen-assisted CVD process could be successfully applied for the growth of highly pure SWNTs by switching the catalyst from Fe to Co nanoparticles. The topological morphologies and p-type transistor electrical transport properties of the grown SWNTs were examined by using atomic force microscope (AFM), Raman, and from FET devices fabricated by photolithography.

Random topological defects in double-walled carbon nanotubes: On characterization and programmable defect-engineering of spatio-mechanical properties

  • A. Roy;K. K. Gupta;S. Dey;T. Mukhopadhyay
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.91-109
    • /
    • 2024
  • Carbon nanotubes are drawing wide attention of research communities and several industries due to their versatile capabilities covering mechanical and other multi-physical properties. However, owing to extreme operating conditions of the synthesis process of these nanostructures, they are often imposed with certain inevitable structural deformities such as single vacancy and nanopore defects. These random irregularities limit the intended functionalities of carbon nanotubes severely. In this article, we investigate the mechanical behaviour of double-wall carbon nanotubes (DWCNT) under the influence of arbitrarily distributed single vacancy and nanopore defects in the outer wall, inner wall, and both the walls. Large-scale molecular simulations reveal that the nanopore defects have more detrimental effects on the mechanical behaviour of DWCNTs, while the defects in the inner wall of DWCNTs make the nanostructures more vulnerable to withstand high longitudinal deformation. From a different perspective, to exploit the mechanics of damage for achieving defect-induced shape modulation and region-wise deformation control, we have further explored the localized longitudinal and transverse spatial effects of DWCNT by designing the defects for their regional distribution. The comprehensive numerical results of the present study would lead to the characterization of the critical mechanical properties of DWCNTs under the presence of inevitable intrinsic defects along with the aspect of defect-induced spatial modulation of shapes for prospective applications in a range of nanoelectromechanical systems and devices.

Characterization of Vancomycin Resistant Enterococci and Drug Ligand Interaction between vanA of E. faecalis with the Bio-Compounds from Aegles marmelos

  • Jayavarsha V;Smiline Girija A.S;Shoba Gunasekaran;Vijayashree Priyadharsini J
    • Journal of Pharmacopuncture
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2023
  • Objectives: Enterococcus faecalis is a gram positive diplococci, highly versatile and a normal commensal of the gut microbiome. Resistance to vancomycin is a serious issue in various health-care setting exhibited by vancomycin resistant Enterococci (VRE) due to the alteration in the peptidoglycan synthesis pathway. This study is thus aimed to detect the VRE from the patients with root caries from the clinical isolates of E. faecalis and to evaluate the in-silico interactions between vanA and the Aegles marmelos bio-compounds. Methods: E. faecalis was phenotypically characterized from 20 root caries samples and the frequency of vanA and vanB genes was detected by polymerase chain reaction (PCR). Further crude methanolic extracts from the dried leaves of A. marmelos was assessed for its antimicrobial activity. This is followed by the selection of five A. marmelos bio-compounds for the computational approach towards the drug ligand interactions. Results: 12 strains (60%) of E. faecalis was identified from the root caries samples and vanA was detected from two strains (16%). Both the stains showed the presence of vanA and none of the strains possessed vanB. Crude extract of A. marmelos showed promising antibacterial activity against the VRE strains. In-silico analysis of the A. marmelos biocompounds revealed Imperatonin as the best compound with high docking energy (-8.11) and hydrogen bonds with < 140 TPSA (Topological polar surface area) and zero violations. Conclusion: The present study records the VRE strains among the root caries with imperatorin from A. marmelos as a promising drug candidate. However the study requires further experimentation and validation.