DOI QR코드

DOI QR Code

A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process

  • Byon, Hye-Ryung (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lim, Hyun-Seob (Department of Chemistry, Pohang University of Science and Technology) ;
  • Song, Hyun-Jae (Department of Chemistry, Pohang University of Science and Technology) ;
  • Choi, Hee-Cheul (Department of Chemistry, Pohang University of Science and Technology)
  • Published : 2007.11.20

Abstract

A successful combination of “oxygen-assisted chemical vapor deposition (CVD) process” and Co catalyst nanoparticles to grow highly pure single walled carbon nanotubes (SWNTs) was demonstrated. Recently, it was reported that addition of small amounts of oxygen during CVD process dramatically increased the purity and yield of carbon nanotubes. However, this strategy could not be applied for discrete Fe nanoparticle catalysts from which appropriate yields of SWNTs could be grown directly on solid substrates, and fabricated into field effect transistors (FETs) quite efficiently. The main reason for this failure is due to the carbothermal reduction which results in SiO2 nanotrench formation. We found that the oxygen-assisted CVD process could be successfully applied for the growth of highly pure SWNTs by switching the catalyst from Fe to Co nanoparticles. The topological morphologies and p-type transistor electrical transport properties of the grown SWNTs were examined by using atomic force microscope (AFM), Raman, and from FET devices fabricated by photolithography.

Keywords

References

  1. Kong, J.; Franklin, N.; Chou, C.; Pan, S.; Cho, K. J.; Dai, H. Science 2000, 287, 622 https://doi.org/10.1126/science.287.5453.622
  2. Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984 https://doi.org/10.1073/pnas.0837064100
  3. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377 https://doi.org/10.1038/386377a0
  4. Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Science 1999, 283, 152
  5. Tans, S.; Verschueren, A.; Dekker, C. Nature 1998, 393, 49 https://doi.org/10.1038/29954
  6. Li, Y.; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D.; Dai, H. J. Phys. Chem. B 2001, 105, 11424 https://doi.org/10.1021/jp012085b
  7. Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. J. Phys. Chem. B 2001, 105, 8297 https://doi.org/10.1021/jp0114891
  8. Zimmerman, J. L.; Bradley, R. K.; Huffman, C. B.; Hauge, R. H.; Margrave, J. L. Chem. Mater. 2000, 12, 1361 https://doi.org/10.1021/cm990693m
  9. Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362 https://doi.org/10.1126/science.1104962
  10. Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16141 https://doi.org/10.1073/pnas.0507064102
  11. Byon, H. R.; Choi, H. C. Nature Nanotech. 2007, 2, 162 https://doi.org/10.1038/nnano.2007.26
  12. Murakami, Y.; Miyauchi, Y.; Chiashi, S.; Maruyama, S. Chem. Phys. Lett. 2003, 377, 49 https://doi.org/10.1016/S0009-2614(03)01094-7
  13. Lee, Y.; Song, H. J.; Shin, H. S.; Shin, H. J.; Choi, H. C. Small 2005, 1, 975 https://doi.org/10.1002/smll.200500132
  14. Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. Nano Lett. 2003, 3, 347 https://doi.org/10.1021/nl034010k
  15. Choi, H. C.; Kim, W.; Wang, D.; Dai, H. J. Phys. Chem. B 2002, 106, 12361 https://doi.org/10.1021/jp026421f
  16. Choi, H. C.; Kundaria, S.; Wang, D.; Javey, A.; Wang, Q.; Rolandi, M.; Dai, H. Nano Lett. 2003, 3, 157 https://doi.org/10.1021/nl025876d
  17. Yang, H. J.; Song, H. J.; Shin, H. J.; Choi, H. C. Langmuir 2005, 21, 9098 https://doi.org/10.1021/la051484l
  18. Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.; Ogura, M.; Koubo, T.; Maruyama, S. Chem. Phys. Lett. 2004, 385, 298 https://doi.org/10.1016/j.cplett.2003.12.095
  19. Sato, H.; Hata, K.; Hiasa, K.; Saito, Y. J. Vac. Sci. Technol. B 2007, 25, 579 https://doi.org/10.1116/1.2433964
  20. Li, J.-L.; Kudin, K. N.; McAllister, M. J.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Phys. Rev. Lett. 2006, 96, 176101 https://doi.org/10.1103/PhysRevLett.96.176101
  21. Jorio, A.; Pimenta, M. A.; Souza Filho, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. New J. Phys. 2003, 5, 139 https://doi.org/10.1088/1367-2630/5/1/139
  22. Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Uemezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Synth. Met. 1999, 103, 2555 https://doi.org/10.1016/S0379-6779(98)00278-1

Cited by

  1. Comparative investigation of the formation of polytetrafluoroethylene nanoparticles on different solid substrates through the adsorption of tetrafluoroethylene vol.121, pp.4, 2011, https://doi.org/10.1002/app.33351
  2. Methods for carbon nanotubes synthesis—review vol.21, pp.40, 2011, https://doi.org/10.1039/c1jm12254a
  3. Iron-Doped Single-Walled Carbon Nanotubes as New Heterogeneous and Highly Efficient Catalyst for Acylation of Alcohols, Phenols, Carboxylic Acids and Amines under Solvent-Free Conditions vol.353, pp.2-3, 2011, https://doi.org/10.1002/adsc.201000365
  4. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method vol.11, pp.5, 2018, https://doi.org/10.3390/ma11050822
  5. Carbon based materials: a review of adsorbents for inorganic and organic compounds vol.2, pp.2, 2007, https://doi.org/10.1039/d0ma00087f