References
- Kong, J.; Franklin, N.; Chou, C.; Pan, S.; Cho, K. J.; Dai, H. Science 2000, 287, 622 https://doi.org/10.1126/science.287.5453.622
- Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4984 https://doi.org/10.1073/pnas.0837064100
- Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377 https://doi.org/10.1038/386377a0
- Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Science 1999, 283, 152
- Tans, S.; Verschueren, A.; Dekker, C. Nature 1998, 393, 49 https://doi.org/10.1038/29954
- Li, Y.; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D.; Dai, H. J. Phys. Chem. B 2001, 105, 11424 https://doi.org/10.1021/jp012085b
- Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. J. Phys. Chem. B 2001, 105, 8297 https://doi.org/10.1021/jp0114891
- Zimmerman, J. L.; Bradley, R. K.; Huffman, C. B.; Hauge, R. H.; Margrave, J. L. Chem. Mater. 2000, 12, 1361 https://doi.org/10.1021/cm990693m
- Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362 https://doi.org/10.1126/science.1104962
- Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16141 https://doi.org/10.1073/pnas.0507064102
- Byon, H. R.; Choi, H. C. Nature Nanotech. 2007, 2, 162 https://doi.org/10.1038/nnano.2007.26
- Murakami, Y.; Miyauchi, Y.; Chiashi, S.; Maruyama, S. Chem. Phys. Lett. 2003, 377, 49 https://doi.org/10.1016/S0009-2614(03)01094-7
- Lee, Y.; Song, H. J.; Shin, H. S.; Shin, H. J.; Choi, H. C. Small 2005, 1, 975 https://doi.org/10.1002/smll.200500132
- Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H. Nano Lett. 2003, 3, 347 https://doi.org/10.1021/nl034010k
- Choi, H. C.; Kim, W.; Wang, D.; Dai, H. J. Phys. Chem. B 2002, 106, 12361 https://doi.org/10.1021/jp026421f
- Choi, H. C.; Kundaria, S.; Wang, D.; Javey, A.; Wang, Q.; Rolandi, M.; Dai, H. Nano Lett. 2003, 3, 157 https://doi.org/10.1021/nl025876d
- Yang, H. J.; Song, H. J.; Shin, H. J.; Choi, H. C. Langmuir 2005, 21, 9098 https://doi.org/10.1021/la051484l
- Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.; Ogura, M.; Koubo, T.; Maruyama, S. Chem. Phys. Lett. 2004, 385, 298 https://doi.org/10.1016/j.cplett.2003.12.095
- Sato, H.; Hata, K.; Hiasa, K.; Saito, Y. J. Vac. Sci. Technol. B 2007, 25, 579 https://doi.org/10.1116/1.2433964
- Li, J.-L.; Kudin, K. N.; McAllister, M. J.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Phys. Rev. Lett. 2006, 96, 176101 https://doi.org/10.1103/PhysRevLett.96.176101
- Jorio, A.; Pimenta, M. A.; Souza Filho, A. G.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. New J. Phys. 2003, 5, 139 https://doi.org/10.1088/1367-2630/5/1/139
- Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Uemezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Synth. Met. 1999, 103, 2555 https://doi.org/10.1016/S0379-6779(98)00278-1
Cited by
- Comparative investigation of the formation of polytetrafluoroethylene nanoparticles on different solid substrates through the adsorption of tetrafluoroethylene vol.121, pp.4, 2011, https://doi.org/10.1002/app.33351
- Methods for carbon nanotubes synthesis—review vol.21, pp.40, 2011, https://doi.org/10.1039/c1jm12254a
- Iron-Doped Single-Walled Carbon Nanotubes as New Heterogeneous and Highly Efficient Catalyst for Acylation of Alcohols, Phenols, Carboxylic Acids and Amines under Solvent-Free Conditions vol.353, pp.2-3, 2011, https://doi.org/10.1002/adsc.201000365
- A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method vol.11, pp.5, 2018, https://doi.org/10.3390/ma11050822
- Carbon based materials: a review of adsorbents for inorganic and organic compounds vol.2, pp.2, 2007, https://doi.org/10.1039/d0ma00087f