• Title/Summary/Keyword: Topographic Analysis

Search Result 693, Processing Time 0.027 seconds

Study on Driving System for Tidal Flat Vehicle (연약갯벌 차량용 주행장치 개발에 관한 연구)

  • Yeu, Tae-Kyeong;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.72-78
    • /
    • 2010
  • This paper presents a design approach of driving system for tidal flat vehicle. Firstly, topographic and geological survey of tidal flat zone was accomplished. 'Anac' located in the west-south coast of South Korea was chosen for the survey area. From the survey, the basic design data such as distribution of gullies size and bearing pressure was obtained. To figure out the shape of driving system, numerical simulations were carried out. Through the numerical dynamic simulations using $Recurdyn^{TM}$, the performance of various concepts of driving system was analyzed. From the results, we propose the conceptual design with the functions: a) low contact pressure, b) powerful driving force transmission, c) adaptation to the ground undulation. To satisfy these functional requirements, the driving system adopts rubber tracks, sprockets, tires and suspensions. The static structural analysis of the frame structure was executed as well, from which the detailed design was drawn out. To validate the performance of the designed driving system, the test vehicle which has gasoline engine of 27HP and mechanical transmission was constructed. The driving tests of the vehicle were performed twice at the "Anac" area, and unveiled its capability.

Fusion of DEMs Generated from Optical and SAR Sensor

  • Jin, Kveong-Hyeok;Yeu, Yeon;Hong, Jae-Min;Yoon, Chang-Rak;Yeu, Bock-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.5 s.23
    • /
    • pp.53-65
    • /
    • 2002
  • The most widespread techniques for DEM generation are stereoscopy for optical sensor images and SAR interferometry(InSAR) for SAR images. These techniques suffer from certain sensor and processing limitations, which can be overcome by the synergetic use of both sensors and DEMs respectively. This study is associated with improvements of accuracy with consistency of image's characteristics between two different DEMs coming from stereoscopy for the optical images and interferometry for SAR images. The MWD(Multiresolution Wavelet Decomposition) and HPF(High-Pass Filtering), which take advantage of the complementary properties of SAR and stereo optical DEMs, will be applied for the fusion process. DEM fusion is tested with two sets of SPOT and ERS-l/-2 satellite imagery and for the analysis of results, DEM generated from digital topographic map(1 to 5000) is used. As a result of an integration of DEMs, it can more clearly portray topographic slopes and tilts when applying the strengths of DEM of SAR image to DEM of an optical satellite image and in the case of HPF, the resulting DEM.

  • PDF

Geomorphologic Nash Model with Variable Width Function

  • Thuy, Nguyen Thi Phuong;Kim, Joo-Cheol;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.212-212
    • /
    • 2015
  • So far, geomorphologic dispersion due to the heterogeneity characteristics of flow paths in a basin has been demonstrated as a major factor affecting to the hydrologic response function of a catchment. This effect has considered by many previous studies taking into account flow path length factors, especially in the application of width function. Based upon the analysis of topographic index, another important geomorphologic factor extracted from DEM data, this work presents a new factor named saturation to evaluate its effects to the formation of the well-known instantaneous unit hydrograph (IUH) in Nash model and drainage structure in a river basin. First, the geomorphologic parameters corresponding to different saturation conditions are computed from DEM data with the support of GIS software. Then, in the combination of hydrologic and geomorphologic data, effective rainfall in each saturation degree and the Nash parameters are calculated using excel. Finally, the verification process with direct runoff data is conducted using Fortran programming. This process is applied to five sub-watersheds in Bocheong catchment ($485.21km^2$) in Korea where the necessary data are available and believable. The results from this approach will improve researchers and students'understandings about the relationship between rainfall and runoff and its relation with drainage structure within a catchment.

  • PDF

Studies on design of forest road nets for mechanized yarding operations - Classification of forest site - (기계화(機械化) 집재작업(集材作業)을 위한 노망(路網)의 정비 - 임지(林地)의 분류(分類) -)

  • Cha, Du Song;Cho, Koo Hyun;Ji, Byung Yun
    • Journal of Forest and Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 1993
  • The purpose of this study is to offer detailed topographic information for substantially selecting the yarding machine for mechanized yarding operations, classifying the forest site by cluster analysis and principal component analysis, and investigating simultaneously the variables which give much influence on the classification of forest site in forestry build-up region (21, 477ha) of Chunchon Gun, Kwangweon Do. Ten topographic variables were used for the analysis. The results of study were as follows : 1) Gosung region (2, 252ha) was classified into hilly terrain (57%) and steep terrain (43%) and required the tractor prehauling system for the former one and the medium skyline system for latter one, respectively. 2) 65% of Gajung region (2,306ha) and 67% of Kwangpan region (2, 627ha) were classified into steep terrain fitted for the medium skyline system and the portion of both region showed the hilly terrain for the tractor prehauling system. 3) Jiam region (4, 591ha), consisted only of steep terrain, required the medium skyline system. 4) Gunja region (3, 400ha), Sudong region (3, 984ha) and Sinpo region (2, 340ha) were classified into steep terrain, requiring the medium skyline system, with 85%, 75%, and 75%, respectively.

  • PDF

Analysis on Displacement Characteristics of Slow-Moving Landslide on a slope near road Using the Topographic Map and Airborne LiDAR (수치지형도와 항공 LiDAR를 이용한 도로인접 사면 땅밀림 발생지 변위 특성 분석)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • The purpose of this study is to analyze the displacement characteristics in slow-moving landslide area using digital elevation model and airborne LiDAR when unpredictable disaster such as slow-moving landslide occurred. We also aimed to provide basic data for establishing a rapid, reasonable and effective restoration plan. In this study, slow-moving landslide occurrence cracks were selected through the airborne LiDAR data, and the topographic changes and the scale of occurrence were quantitatively analyzed. As a result of the analysis, the study area showed horseshoe shape similar to the general form of slow-moving landslide occurrence in Korea, and the direction of movement was in the north direction. The total area of slow-moving landslide damage was estimated to about 2.5ha, length of landsldie scrap 327.3m, average width 19.3m, and average depth 8.6m. The slow-moving landslides did not occur on a large scale but occurred on the adjacent slope where roads were located, caused damage to retaining walls and roads. The field survey of slow-moving landslides was limited by accessibility and safety issues, but there was an advantage that accurate analysis was possible through the airborne LiDAR. However, because airborne LiDAR has costly disadvantages, it has proposed a technique to mount LiDAR on UAV for rapidity, long-term monitoring. In a slow-moving landslide damage area, information such as direction of movement of cracks and change of scale should be acquired continuously to be used in restoration planning and prevention of damage.

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF

Analysis of Positioning Accuracy Using LX GNSS Network RTK (LX 위성측위 인프라기반 네트워크 RTK를 이용한 측위성능 분석)

  • Ha, Jihyun;Kim, Hyun-ho;Jung, Wan-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • The Spatial information research institute of the LX Korea land and geospatial informatix corporation manages infrastructure for the LX global navigation satellite system (GNSS), which comprises 30 monitoring stations nationwide. Since 2014, it has conducted network real-time kinematic (RTK) tests using the master-auxiliary concept (MAC). This study introduces the infrastructure of LX GNSS and presents the results of a performance analysis of the LX RTK service. The analysis was based on a total of 25 cadastral topographic control points in Jeonju, Seoul, and Incheon. For each point, performance was measured over one observation, two repeated observations, and five repeated observations. The measurements obtained from LX MAC and the VRS of the National Geographic Information Institute were compared with the announced coordinates derived from cadastral topographic control points. As a result, the two systems were found to have similar performance with average error and standard deviation differing only by 1 to 2 cm.

Estimation of Design Wind Speed for Building Using Spatial Information Analysis (공간정보 분석을 통한 건축물의 설계풍속 산정)

  • Lee, Seong-Yun;Jo, Hyun-Jae;Lee, Hyun-Ki;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.79-89
    • /
    • 2015
  • Once the building is higher than certain size, the wind effect plays very important role in structure design. Moreover, this is more important in Korea because dangerous phenomena like typhoons are common. Rational wind resistant design is being magnified considering the global flow and climate changes. This research presented the estimation method of design wind load using spatial information analysis based on 1:5,000 digital map and performed comparative analysis with actual application cases. The wind velocity pressure exposure coefficient and topographic coefficient turned out to be more quantitative and rational when calculated through the proposed method. The time and cost are comparatively low when compared with traditional method which contribute to the economic and rational wind resistant design.

GIS Based Analysis of Landslide Factor Effect in Inje Area Using the Theory of Quantification II (수량화 2종법을 이용한 GIS 기반의 인제지역 산사태 영향인자 분석)

  • Kim, Gi-Hong;Lee, Hwan-Gil
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.57-66
    • /
    • 2012
  • Gangwon-do has been suffering extensive landslide dam age, because its geography consists mainly of mountains. Analyzing the related factors is crucial for landslide prediction. We digitized the landslide and non-landslide spots on an aerial photo obtained right after a disaster in Inje, Gangwon-do. Three landslide factors-topographic, forest type, and soil factors-w ere statistically analyzed through GIS overlap analysis between topographic map, forest type map, and soil map. The analysis showed that landslides occurred mainly between the inclination of $20^{\circ}$ and $35^{\circ}$, and needleleaf tree area is more vulnerable to a landslide. About soil properties, an area with shallow effective soil depth and parent material of acidic rock has a greater chance of landslide.

Development of Artificial Neural Network Techniques for Landslide Susceptibility Analysis (산사태 취약성 분석 연구를 위한 인공신경망 기법 개발)

  • Chang, Buhm-Soo;Park, Hyuck-Jin;Lee, Saro;Juhyung Ryu;Park, Jaewon;Lee, Moung-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.499-506
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.

  • PDF