• Title/Summary/Keyword: Topic network analysis

Search Result 396, Processing Time 0.021 seconds

Factors Influencing Consumer's Sharing Intent of Facebook Viral Advertising (소비자의 페이스북 바이럴 광고 구전의도에 영향을 미치는 요인에 관한 연구)

  • Heo, Seo-Jeong;Jo, Chang-Hwan
    • (The) Korean Journal of Advertising
    • /
    • v.28 no.3
    • /
    • pp.53-81
    • /
    • 2017
  • As online video advertising market grows, viral advertising is drawing attention. This study investigated factors influencing consumer's sharing intent of viral advertising each from four dimensions which are content, sender, consumer, and network. As a result, factors of persuasive intent, brand-ad image fit, perceived self-presentation, and bridging social capital were found to affect consumer's sharing intent of viral advertising. And persuasive intent of content was found to be negatively affect consumer's sharing intent. Social value and bonding social capital were not found to have significant influence on consumer's sharing intent of viral advertising. From the analysis of this result, this study suggested future research topic and academic/practical implications.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

A Study on the Effects of User Participation on Stickiness and Continued Use on Internet Community (인터넷 커뮤니티에서 사용자 참여가 밀착도와 지속적 이용의도에 미치는 영향)

  • Ko, Mi-Hyun;Kwon, Sun-Dong
    • Asia pacific journal of information systems
    • /
    • v.18 no.2
    • /
    • pp.41-72
    • /
    • 2008
  • The purpose of this study is the investigation of the effects of user participation, network effect, social influence, and usefulness on stickiness and continued use on Internet communities. In this research, stickiness refers to repeat visit and visit duration to an Internet community. Continued use means the willingness to continue to use an Internet community in the future. Internet community-based companies can earn money through selling the digital contents such as game, music, and avatar, advertizing on internet site, or offering an affiliate marketing. For such money making, stickiness and continued use of Internet users is much more important than the number of Internet users. We tried to answer following three questions. Fist, what is the effects of user participation on stickiness and continued use on Internet communities? Second, by what is user participation formed? Third, are network effect, social influence, and usefulness that was significant at prior research about technology acceptance model(TAM) still significant on internet communities? In this study, user participation, network effect, social influence, and usefulness are independent variables, stickiness is mediating variable, and continued use is dependent variable. Among independent variables, we are focused on user participation. User participation means that Internet user participates in the development of Internet community site (called mini-hompy or blog in Korea). User participation was studied from 1970 to 1997 at the research area of information system. But since 1997 when Internet started to spread to the public, user participation has hardly been studied. Given the importance of user participation at the success of Internet-based companies, it is very meaningful to study the research topic of user participation. To test the proposed model, we used a data set generated from the survey. The survey instrument was designed on the basis of a comprehensive literature review and interviews of experts, and was refined through several rounds of pretests, revisions, and pilot tests. The respondents of survey were the undergraduates and the graduate students who mainly used Internet communities. Data analysis was conducted using 217 respondents(response rate, 97.7 percent). We used structural equation modeling(SEM) implemented in partial least square(PLS). We chose PLS for two reason. First, our model has formative constructs. PLS uses components-based algorithm and can estimated formative constructs. Second, PLS is more appropriate when the research model is in an early stage of development. A review of the literature suggests that empirical tests of user participation is still sparse. The test of model was executed in the order of three research questions. First user participation had the direct effects on stickiness(${\beta}$=0.150, p<0.01) and continued use (${\beta}$=0.119, p<0.05). And user participation, as a partial mediation model, had a indirect effect on continued use mediated through stickiness (${\beta}$=0.007, p<0.05). Second, optional participation and prosuming participation significantly formed user participation. Optional participation, with a path magnitude as high as 0.986 (p<0.001), is a key determinant for the strength of user participation. Third, Network effect (${\beta}$=0.236, p<0.001). social influence (${\beta}$=0.135, p<0.05), and usefulness (${\beta}$=0.343, p<0.001) had directly significant impacts on stickiness. But network effect and social influence, as a full mediation model, had both indirectly significant impacts on continued use mediated through stickiness (${\beta}$=0.11, p<0.001, and ${\beta}$=0.063, p<0.05, respectively). Compared with this result, usefulness, as a partial mediation model, had a direct impact on continued use and a indirect impact on continued use mediated through stickiness. This study has three contributions. First this is the first empirical study showing that user participation is the significant driver of continued use. The researchers of information system have hardly studies user participation since late 1990s. And the researchers of marketing have studied a few lately. Second, this study enhanced the understanding of user participation. Up to recently, user participation has been studied from the bipolar viewpoint of participation v.s non-participation. Also, even the study on participation has been studied from the point of limited optional participation. But, this study proved the existence of prosuming participation to design and produce products or services, besides optional participation. And this study empirically proved that optional participation and prosuming participation were the key determinant for user participation. Third, our study compliments traditional studies of TAM. According prior literature about of TAM, the constructs of network effect, social influence, and usefulness had effects on the technology adoption. This study proved that these constructs still are significant on Internet communities.

Exploring the Research Trends of Learning Strategies in Korean Language Education Using Co-word Analysis (동시출현단어 분석을 활용한 한국어교육에서의 학습전략 연구 동향 탐색)

  • Heo, Youngsoo;Park, Ji-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.2
    • /
    • pp.65-86
    • /
    • 2021
  • In the foreign language education, learners are an important part of education, however in the Korean language education, the study of learners was insufficient compared to the contents of education, teaching methods and textbooks. Therefore, it is meaningful to analyze how learner research, especially learning strategy research, has been conducted and derive areas that need research for better education. In this study, co-word analysis was conducted on the titles of academic journals and dissertations in order to analyze the learning strategy research in Korean language education. I found it is about "reading" that the most studies related to Korean language learners' learning strategies were conducted and those studies' subjects mostly were 'Chinese international students' and 'marriage-immigrants'. In addition, the results of the subgroup analysis on the research topic show four major subgroups: a group related to 'reading for academic purposes', a group related to 'request, rejection, conversation, etc.', a group related to 'writing', and a group related to 'vocabulary, listening'. This shows that the researchers' major interests in studying Korean learner's strategies are "reading" and "speaking" and their studies have been concentrated in the specific areas. Therefore, it is necessary for researchers to study various functions and subjects in Korean language learner's learning strategies.

Analysis of Research Trends about COVID-19: Focusing on Medicine Journals of MEDLINE in Korea (COVID-19 관련 연구 동향에 대한 분석 - MEDLINE 등재 국내 의학 학술지를 중심으로 -)

  • Mijin Seo;Jisu Lee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.3
    • /
    • pp.135-161
    • /
    • 2023
  • This study analyzed the research trends of COVID-19 research papers published in medical journals of Korea. Data were collected from 25 MEDLINE journals in 'Medicine and Pharmacy' studies and a total of 800 were selected. As a result of the study, authors from domestic affiliations made up 76.96% of the total, and the proportion of authors from foreign institutions decreased without significant change. The authors' majors were 'Internal Medicine' (32.85%), 'Preventive Medicine/Occupational and Environmental Medicine' (16.23%), 'Radiology' (5.74%), and 'Pediatrics' (5.50%), and 435 (54.38%) papers were collaborative research. As for author keywords, 'COVID19' (674), 'SARSCoV2' (245), 'Coronavirus' (81), and 'Vaccine' (80) were derived as top keywords. There were six words that appeared throughout the entire period: 'COVID19,' 'SARSCoV2,' 'Coronavirus,' 'Korea,' 'Pandemic,' and 'Mortality.' Co-occurrence network analysis was conducted on MeSH terms and author keywords, and common keywords such as 'covid-19,' 'sars-cov-2,' and 'public health' were derived. In topic modeling, five topics were identified, including 'Vaccination,' 'COVID-19 outbreak status,' 'Omicron variant,' 'Mental health, control measures,' and 'Transmission and control in Korea.' Through this study, it was possible to identify the research areas and major keywords by year of COVID-19 research papers published during the 'Public Health Emergency of International Concern (PHEIC).'

Analysis of Review Data of 'Tamna' Franchisees to Promote Sustainable Travel in Jeju City (제주시의 지속가능한 여행 활성화를 위한 지역화폐 '탐나는전' 가맹점의 리뷰 데이터 분석)

  • Sehui Baek;Sehyoung Kim;Miran Bae;Juyoung Kang
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.113-128
    • /
    • 2022
  • After COVID-19, interest in "sustainable tourism" increased, and the number of tourists who wanted to experience "sustainable tourism" also increased. However, there is a problem that the programs and methods for 'sustainable tourism' are not specific and diverse. In addition, since most of the interests of "sustainable tourism" focus on "environment" and "carbon neutrality," there are not many programs or government policies that can contribute to the community. Therefore, in this study, news data and review data were analyzed to suggest a method for promoting 'sustainable tourism'. First, in this study, major themes of sustainable travel were derived through news big data analysis. Through this analysis, policy themes and events of 'sustainable tourism' were derived. By analyzing news big data related to "sustainable tourism," we would like to analyze the reasons why sustainable travel has not been activated in Korea. Finally, in order to promote sustainable travel in Jeju island, we analyzed user review data of Jeju local currency, and propose a idea to coexist with the local community.

Methodology for Issue-related R&D Keywords Packaging Using Text Mining (텍스트 마이닝 기반의 이슈 관련 R&D 키워드 패키징 방법론)

  • Hyun, Yoonjin;Shun, William Wong Xiu;Kim, Namgyu
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.57-66
    • /
    • 2015
  • Considerable research efforts are being directed towards analyzing unstructured data such as text files and log files using commercial and noncommercial analytical tools. In particular, researchers are trying to extract meaningful knowledge through text mining in not only business but also many other areas such as politics, economics, and cultural studies. For instance, several studies have examined national pending issues by analyzing large volumes of text on various social issues. However, it is difficult to provide successful information services that can identify R&D documents on specific national pending issues. While users may specify certain keywords relating to national pending issues, they usually fail to retrieve appropriate R&D information primarily due to discrepancies between these terms and the corresponding terms actually used in the R&D documents. Thus, we need an intermediate logic to overcome these discrepancies, also to identify and package appropriate R&D information on specific national pending issues. To address this requirement, three methodologies are proposed in this study-a hybrid methodology for extracting and integrating keywords pertaining to national pending issues, a methodology for packaging R&D information that corresponds to national pending issues, and a methodology for constructing an associative issue network based on relevant R&D information. Data analysis techniques such as text mining, social network analysis, and association rules mining are utilized for establishing these methodologies. As the experiment result, the keyword enhancement rate by the proposed integration methodology reveals to be about 42.8%. For the second objective, three key analyses were conducted and a number of association rules between national pending issue keywords and R&D keywords were derived. The experiment regarding to the third objective, which is issue clustering based on R&D keywords is still in progress and expected to give tangible results in the future.

An Investigation on Characteristics and Intellectual Structure of Sociology by Analyzing Cited Data (사회학 분야의 연구데이터 특성과 지적구조 규명에 관한 연구)

  • Choi, Hyung Wook;Chung, EunKyung
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.3
    • /
    • pp.109-124
    • /
    • 2017
  • Through a wide variety of disciplines, practices on data access and re-use have been increased recently. In fact, there has been an emerging phenomenon that researchers tend to use the data sets produced by other researchers and give scholarly credit as citation. With respect to this practice, in 2012, Thomson Reuters launched Data Citation Index (DCI). With the DCI, citation to research data published by researchers are collected and analyzed in a similar way for citation to journal articles. The purpose of this study is to identify the characteristics and intellectual structure of sociology field based on research data, which is one of actively data-citing fields. To accomplish this purpose, two data sets were collected and analyzed. First, from DCI, a total of 8,365 data were collected in the field of sociology. Second, a total of 12,132 data were collected from Web of Science with a topic search with 'Sociology'. As a result of the co-word analysis of author provided-keywords for both data sets, the intellectual structure of research data-based sociology was composed of two areas and 15 clusters and that of article-based sociology was composed with three areas and 17 clusters. More importantly, medical science area was found to be actively studied in research data-based sociology and public health and psychology are identified to be central areas from data citation.

Exploratory Study of Applying Historiography and SPLC for Developing Information Services: A Case Study of LED Domain (연구지원 정보서비스를 위한 히스토리오그래프와 SPLC 활용에 관한 실험적 연구: LED 분야 사례를 중심으로)

  • Yu, So-Young
    • Journal of the Korean Society for information Management
    • /
    • v.30 no.3
    • /
    • pp.273-296
    • /
    • 2013
  • The purpose of this study is to examine the data coverage and citation threshold for analyzing SPLC(Search Path Link Count) as a main path of a historiograph of a certain topic in order to provide 'core' papers of global research trends to a researcher affiliated with a local R&D institution. 5 datasets were constructed by retrieving and collecting 2,318 articles on RGB LED on Web of Science published from 1990-2013 and 20,109 articles which cited these original 2,318. The SPLC analysis was performed on each dataset by increasing the threshold of citation counts, and the changes and resilience of the 28 extraced networks were compared. The results of user feedback on 198 unique core papers from 28 SPLC networks received from LED researchers affiliated with a Korean government-sponsored research institution were also analyzed. As a result, it is found that the nodes in each SPLC network in each dataset were differentiated by the citation counts, while the changes in the structure of SPLC networks were slight after the networks' citation counts were set at 40. Additionally, the user feedback showed that personalized research interest generally matched to the global research trends identified by the SPLC analysis.

Analysis of Global Entrepreneurship Trends Due to COVID-19: Focusing on Crunchbase (Covid-19에 따른 글로벌 창업 트렌드 분석: Crunchbase를 중심으로)

  • Shinho Kim;Youngjung Geum
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.141-156
    • /
    • 2023
  • Due to the unprecedented worldwide pandemic of the new Covid-19 infection, business trends of companies have changed significantly. Therefore, it is strongly required to monitor the rapid changes of innovation trends to design and plan future businesses. Since the pandemic, many studies have attempted to analyze business changes, but they are limited to specific industries and are insufficient in terms of data objectivity. In response, this study aims to analyze business trends after Covid-19 using Crunchbase, a global startup data. The data is collected and preprocessed every two years from 2018 to 2021 to compare the business trends. To capture the major trends, a network analysis is conducted for the industry groups and industry information based on the co-occurrence. To analyze the minor trends, LDA-based topic modelling and word2vec-based clustering is used. As a result, e-commerce, education, delivery, game and entertainment industries are promising based on their technological advances, showing extension and diversification of industry boundaries as well as digitalization and servitization of business contents. This study is expected to help venture capitalists and entrepreneurs to understand the rapid changes under the impact of Covid-19 and to make right decisions for the future.

  • PDF