• 제목/요약/키워드: Topic network analysis

검색결과 399건 처리시간 0.027초

Applications of the Text Mining Approach to Online Financial Information

  • Hansol Lee;Juyoung Kang;Sangun Park
    • Asia pacific journal of information systems
    • /
    • 제32권4호
    • /
    • pp.770-802
    • /
    • 2022
  • With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.

네트워크 텍스트 분석을 이용한 한국가정과교육학회지 논문의 연구 동향 분석 (Research Trend Analysis of Publications in the Journal of Home Economics Education Association Using Network Text Analysis)

  • 이윤정;김은정;김지선
    • 한국가정과교육학회지
    • /
    • 제31권4호
    • /
    • pp.1-18
    • /
    • 2019
  • 이 연구는 네트워크 텍스트 분석을 이용하여 가정과교육 분야의 연구동향을 분석하였다. 2003년 7월부터 2018년 12월 사이에 한국가정과교육학회지에 게재된 586편의 논문의 주제를 소셜 네트워크 분석프로그램인 Netminer 4의 텍스트분석 도구를 이용하여 주제어들의 출현빈도와 중심성 분석(연결중심성, 근접중심성, 매개중심성), 시기별 LDA 분석 등을 실시하였다. 그 결과는 다음과 같다. 첫째, 전반적으로 출현 빈도가 높은 단어들은 부모, 문화, 단원, 건강, 진로, 소비, 실천성 등이었다. 주제어 네트워크 분석 결과, 연결중심성은 부모, 관리가 가장 높았고, 근접중심성은 부모, 남학생, 매개중심성은 남학생, 단원 등이 가장 높게 나타났다. 둘째, 2003년부터 2018년까지의 연구를 4개 시기로 나누어 중심성 분석을 실시한 결과, 네 시기 모두 교육, 가정, 목적, 수업, 중학교, 학교 등 출현 빈도수가 높은 단어들은 유사하였으나, 시기별로는 제3, 제4시기에는 '목적'이라는 단어가, 제4시기에는 '과정' 이라는 단어가 두드러지게 나타났다. 셋째, 시기별 중심성 분석 결과 중심성의 종류와 무관하게 각 시기에 중요한 역할을 하는 단어들은 일정한 것으로 나타났다. 넷째, LDA 분석을 통한 토픽 변화를 분석하였을 때 교육과정, 교과서, 가족건강성, 교수학습, 평가, 식생활, 외모관리, 소비 등은 모든 시기에 지속적으로 등장하였다. 4개 시기의 토픽은 점차 다양화되고, 세분화되며, 심화되는 경향을 보였다. 연구를 통해 교육과정의 변화와 국가정책이 반영되어 새롭게 등장한 토픽인 교사연수와 안전이 주제어로 도출되었으며, 상대적으로 연구의 관심이 낮았던 토픽은 주거임이 드러나 학자들의 관심과 연구 활성화가 요구된다고 할 것이다. 이 연구는 2000년대 이후 한국가정과교육학계에서 이루어진 연구들의 주요 관심사를 파악할 수 있었다는 점과 관심사들의 순위를 제시하였다는 점에서 의미가 있다.

개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동 (Interoperability of OpenGIS Component and Spatial Analysis Component)

  • 민경욱;장인성;이종훈
    • 한국공간정보시스템학회 논문지
    • /
    • 제3권1호
    • /
    • pp.49-62
    • /
    • 2001
  • 공간정보 및 속성정보를 저장 및 관리하여 서비스하는 지리정보시스템은 최근 네트워크 및 분산환경의 기술개발과 더불어 급격히 변화하고 있다. 이러한 지리정보시스템은 컴포넌트 기반 기술로 자리매김하고 있으며 OGC(OpenGIS Consortium)에서는 지리정보시스템의 설계 및 구현에 대한 다양한 사양과 토픽을 제시하고 있다. OGC의 사양을 충족하는 개방형 지리정보시스템은 다양한 컴포넌트들로 구성되어 있으며, 이러한 컴포넌트 기반의 시스템에 추가적인 요소로써 공간분석 컴포넌트를 구현하였다. 지리정보시스템에서 공간분석기능은 중요한 요소 중 하나이며 전체 시스템의 성능적, 기능적 평가 기준이 되기도 한다. OGC에서 제시하는 기본 공간데이터 모델인 Geometry 모델은 기본 기하공간객체를 관리하는 모델이며, 다양한 분석 컴포넌트들의 연동을 위하여 확장이 필요하다. 즉 기본 기하공간데이터 모델뿐 아니라, 기본 위상공간데이터 모델을 제공해야 하며 또한 이러한 기본 위상공간모델을 다양한 분석기능에 맞게끔 확장이 필요하다. 본 논문에서는 개방형 GIS컴포넌트의 전체 아키텍쳐와 이와 연동되는 분석 컴포넌트로써 네트?p 분석, TIN 분석 컴포넌트에 대하여 살펴보고 또한 기본 기하 데이터 모델인 OGC Simple Feature Geometry의 확장과 연등방법에 대하여 논의해 볼 것이다.

  • PDF

문헌정보학 분야의 리터러시 연구 동향 분석 (A Study on the Research Trends on Literacy in Library and Information Science)

  • 장수현;남영준
    • 정보관리학회지
    • /
    • 제39권3호
    • /
    • pp.263-292
    • /
    • 2022
  • 본 연구는 문헌정보학 현장인 도서관에서 제공되는 서비스인 이용자 교육의 관련 개념인 리터러시가 각종 문헌정보학 연구 분야에서 어떠한 연구 주제를 다루는지 확인하는 것을 목적으로 한다. 이를 위해 WoS와 KCI 데이터베이스에서 문헌정보학 분야 리터러시 관련 논문을 수집하여 키워드 분석 및 토픽 모델링 분석 기법을 상호보완적으로 사용해 분석하였다. 분석 결과, WoS와 KCI의 문헌정보학 분야 리티러시 관련 연구 동향은 저자 키워드, 주요 주제 등에서 차이가 있는 것으로 나타났으며, 토픽 모델링을 통해 KCI의 리터러시 관련 연구를 3개의 토픽으로 분류하였다. 또한, 연구에서 확인한 국내 문헌정보학 분야 리터러시 연구 동향은 전체 리터러시 관련 연구 동향과 연구량 급증 시기, 핵심 다빈출 키워드 차이가 있음을 분석하였다. 특히, 전체 분야 리터러시 연구는 '리터러시', '교육', '미디어', '디지털' 등의 단어가 다수 도출되었지만 문헌정보학 분야의 리터러시 연구는 '정보활용능력', '학교도서관' 등의 키워드가 다수 등장하였다. 이를 바탕으로 향후 국내에서도 정보가 급증하는 오늘날의 정보화 환경에 맞춰 정보에 대한 평가적인 안목을 기를 수 있는 능력에 관한 연구가 필요하다는 결론을 도출하였다.

텍스트네트워크분석을 적용한 통증관리 간호연구의 지식구조 (Identification of Knowledge Structure of Pain Management Nursing Research Applying Text Network Analysis)

  • 박찬숙;박은준
    • 대한간호학회지
    • /
    • 제49권5호
    • /
    • pp.538-549
    • /
    • 2019
  • Purpose: This study aimed to explore and compare the knowledge structure of pain management nursing research, between Korea and other countries, applying a text network analysis. Methods: 321 Korean and 6,685 international study abstracts of pain management, published from 2004 to 2017, were collected. Keywords and meaningful morphemes from the abstracts were analyzed and refined, and their co-occurrence matrix was generated. Two networks of 140 and 424 keywords, respectively, of domestic and international studies were analyzed using NetMiner 4.3 software for degree centrality, closeness centrality, betweenness centrality, and eigenvector community analysis. Results: In both Korean and international studies, the most important, core-keywords were "pain," "patient," "pain management," "registered nurses," "care," "cancer," "need," "analgesia," "assessment," and "surgery." While some keywords like "education," "knowledge," and "patient-controlled analgesia" found to be important in Korean studies; "treatment," "hospice palliative care," and "children" were critical keywords in international studies. Three common sub-topic groups found in Korean and international studies were "pain and accompanying symptoms," "target groups of pain management," and "RNs' performance of pain management." It is only in recent years (2016~17), that keywords such as "performance," "attitude," "depression," and "sleep" have become more important in Korean studies than, while keywords such as "assessment," "intervention," "analgesia," and "chronic pain" have become important in international studies. Conclusion: It is suggested that Korean pain-management researchers should expand their concerns to children and adolescents, the elderly, patients with chronic pain, patients in diverse healthcare settings, and patients' use of opioid analgesia. Moreover, researchers need to approach pain-management with a quality of life perspective rather than a mere focus on individual symptoms.

트윗 텍스트 마이닝 기법을 이용한 구제역의 감성분석 (Sentiment Analysis of Foot-and-Mouth Disease Using Tweet Text-Mining Technique)

  • 채희찬;이종욱;최윤아;박대희;정용화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권11호
    • /
    • pp.419-426
    • /
    • 2018
  • 구제역으로 인하여 국내 축산업계 및 관련 산업분야는 매년 막대한 피해를 입고 있다. 구제역과 관련한 다양한 학술적 연구들이 현재 진행되고는 있으나, 구제역의 발병에 따른 사회적 파급효과에 관한 공학적 분석 연구는 매우 제한적이다. 본 연구에서는 구제역에 관한 일반 시민들의 감성적 반응을 텍스트 마이닝 방법론을 사용하여 분석하는 체계적인 방법론을 제안한다. 제안하는 시스템은 먼저, 트위터에 게시된 트윗 중 구제역과 관련된 데이터를 수집한 후, 딥러닝 기법을 사용하여 극성 분류 과정을 거친다. 둘째, 토픽 모델링의 대표적인 기법 중 하나인 LDA를 활용하여 트윗으로 부터 키워드들을 추출하고, 추출된 키워드들로부터 극성별 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크을 통해 구제역의 위기단계 구간별 사회적 파급효과를 분석한다. 사례 분석으로써, 2010년 7월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 일반 시민들의 감성적 변화를 분석하였다.

Incorporation of Media in the Activities of Scientific Library of Higher Education Institution

  • Horban, Yurii;Berezhna, Oksana;Bohush, Iryna;Doroshenko, Yevhenii;Kovbel, Viktoriia
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.59-66
    • /
    • 2022
  • Students can successfully connect with one another thanks to the introduction of Web 2.0 and the tools and technology linked with it. The fact that rising digital tools are systematically influencing the education system is not a secret. The purpose of the research article efficiently evaluates the influence of incorporation of media in the activities of the scientific library of the higher education institution. The research Methodology is the Concepts, techniques, and procedures to effectively inculcate primary and secondary data to conduct the research effortlessly. It's worth noting that in this case, quantitative primary research was provided in the form of a survey. The researchers have proposed a survey in order to successfully instil a comprehensive view on the "incorporation of media in the operations of the scientific library of higher education institutions." As a result, fifty-one higher education institution principals were asked to attend this session. This is necessary to understand that they are both well-educated and cognizant of the impact of technology innovation on schooling. As a result, the researchers were able to gain a comprehensive view of this situation thanks to this survey. The results effectively showed that most of the participants believe that social media plays a vital role in shaping up higher education and at the same time they believe that the libraries of famous educational institutions must adapt as per the new educational trend so that teachers and students both can tap into its benefit.The practical significance of the result is manoeuvred by the efficient survey analysis and at the same time, peer-reviewed journals have been employed to put forward authentic information. Therefore, efficient insight regarding this topic has been gathered by the researchers.

Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning

  • Faiza Nasir;Haseeb Ahmad;CM Nadeem Faisal;Qaisar Abbas;Mubarak Albathan;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.67-80
    • /
    • 2023
  • Rice is an important food crop for most of the population in Nowadays, psychologists consider social media an important tool to examine mental disorders. Among these disorders, depression is one of the most common yet least cured disease Since abundant of writers having extensive followers express their feelings on social media and depression is significantly increasing, thus, exploring the literary text shared on social media may provide multidimensional features of depressive behaviors: (1) Background: Several studies observed that depressive data contains certain language styles and self-expressing pronouns, but current study provides the evidence that posts appearing with self-expressing pronouns and depressive language styles contain high emotional temperatures. Therefore, the main objective of this study is to examine the literary cyber writers' posts for discovering the symptomatic signs of depression. For this purpose, our research emphases on extracting the data from writers' public social media pages, blogs, and communities; (3) Results: To examine the emotional temperatures and sentences usage between depressive and not depressive groups, we employed the SentiStrength algorithm as a psycholinguistic method, TF-IDF and N-Gram for ranked phrases extraction, and Latent Dirichlet Allocation for topic modelling of the extracted phrases. The results unearth the strong connection between depression and negative emotional temperatures in writer's posts. Moreover, we used Naïve Bayes, Support Vector Machines, Random Forest, and Decision Tree algorithms to validate the classification of depressive and not depressive in terms of sentences, phrases and topics. The results reveal that comparing with others, Support Vectors Machines algorithm validates the classification while attaining highest 79% f-score; (4) Conclusions: Experimental results show that the proposed system outperformed for detection of depression trends in literary cyber writers using sentiment analysis.

시맨틱 웹 기술 기반 정보서비스 시스템 $OntoFrame^{(R)}$ (($OntoFrame^{(R)}$;an Information Service System based on Semantic Web Technology)

  • 성원경;이승우;한선화;정한민;김평;이미경;박동인
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.87-88
    • /
    • 2008
  • 시맨틱 웹 기술을 기반으로 한 정보서비스 시스템인 $OntoFrame^{(R)}$은 연구자가 원하는 정보를 쉽고 정확하게 제공하는 학술정보 분석${\cdot}$융합 서비스 프레임워크를 목표로 한다. 본 시스템은 현재 학술정보를 지식 체계로 표현한 온톨로지와 이에 맞게 학술정보를 관리하고 가공하여 지식화하는 $OntoURI^{(R)}$, 이 지식을 기반으로 추론을 수행하고 고속의 탐색 기능을 제공하는 $OntoReasoner^{(R)}$로 구성되어 있다. 단순 검색 서비스를 제공하는 기존의 검색 시스템과는 달리 본 시스템은 시맨틱 웹 기술을 바탕으로 학술정보에 대한 연도별 토픽 경향, 연관 토픽, 토픽별 연구자와 연구기관, 연구자 네트워크, 통계 정보, 지역적 분포 등과 같은 보다 의미적인 분석 서비스를 제공한다.

  • PDF

텍스트마이닝을 활용한 정보보호 키워드 기반 소셜미디어 빅데이터 분석 (Social Media Bigdata Analysis Based on Information Security Keyword Using Text Mining)

  • 정진명;박영호
    • 한국산업정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-48
    • /
    • 2022
  • 디지털 기술의 발전으로 사회적 이슈들이 SNS와 같은 디지털 기반 플랫폼을 통해서 소통되고 여론을 형성하기도 한다. 본 연구에서는 소셜미디어를 통해서 공유되고 있는 정보보호 이슈관련 여론을 살펴보기 위하여 대표적인 단문 소셜네트워크서비스인 트위터 빅데이터 분석을 진행하였다. 2021년 1년간 14개 정보보호 관련 키워드를 중심으로 데이터를 수집한 후, 데이터마이닝 기술을 활용하여 용어 빈도(TF)분석과 피어슨 계수를 활용한 상관분석을 통해 키워드간의 상관관계를 밝혔다. 또한 잠재적 확률기반 LDA 토픽모델링을 실시하여 정보보호분야에 많은 관심을 받았던 6개의 주요 토픽을 도출하였다. 이러한 결과는 관련 산업의 전략수립이나, 정부 정책수립 시 주요 키워드를 도출하는 기초데이터로 활용될 수 있을 것으로 기대된다.