• Title/Summary/Keyword: Topic Information

Search Result 1,944, Processing Time 0.027 seconds

Detecting Knowledge structures in Artificial Intelligence and Medical Healthcare with text mining

  • Hyun-A Lim;Pham Duong Thuy Vy;Jaewon Choi
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.817-837
    • /
    • 2019
  • The medical industry is rapidly evolving into a combination of artificial intelligence (AI) and ICT technology, such as mobile health, wireless medical, telemedicine and precision medical care. Medical artificial intelligence can be diagnosed and treated, and autonomous surgical robots can be operated. For smart medical services, data such as medical information and personal medical information are needed. AI is being developed to integrate with companies such as Google, Facebook, IBM and others in the health care field. Telemedicine services are also becoming available. However, security issues of medical information for smart medical industry are becoming important. It can have a devastating impact on life through hacking of medical devices through vulnerable areas. Research on medical information is proceeding on the necessity of privacy and privacy protection. However, there is a lack of research on the practical measures for protecting medical information and the seriousness of security threats. Therefore, in this study, we want to confirm the research trend by collecting data related to medical information in recent 5 years. In this study, smart medical related papers from 2014 to 2018 were collected using smart medical topics, and the medical information papers were rearranged based on this. Research trend analysis uses topic modeling technique for topic information. The result constructs topic network based on relation of topics and grasps main trend through topic.

Mobile Content Curation Service Based on Real-Time Request/Response Model (실시간 요청/응답 모델에 기반한 모바일 콘텐츠 큐레이션 서비스)

  • Kim, Namyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • This paper proposes a mobile content curation service to collect various online/offline publications. The company publishes one-time topic information to a broker server in advance and customer curates topic information on a mobile device by requesting it. The main characteristics of the proposed service are: it is based on request/response model rather than existing publish/subscribe model, can easily specify topic information by input string without QR code or audio recognition, and retrieves all of topic information anywhere anytime by storing it on mobile device. This service can be used for second screen campaign for TV and various online/offline events.

R&D Perspective Social Issue Packaging using Text Analysis

  • Wong, William Xiu Shun;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.71-95
    • /
    • 2016
  • In recent years, text mining has been used to extract meaningful insights from the large volume of unstructured text data sets of various domains. As one of the most representative text mining applications, topic modeling has been widely used to extract main topics in the form of a set of keywords extracted from a large collection of documents. In general, topic modeling is performed according to the weighted frequency of words in a document corpus. However, general topic modeling cannot discover the relation between documents if the documents share only a few terms, although the documents are in fact strongly related from a particular perspective. For instance, a document about "sexual offense" and another document about "silver industry for aged persons" might not be classified into the same topic because they may not share many key terms. However, these two documents can be strongly related from the R&D perspective because some technologies, such as "RF Tag," "CCTV," and "Heart Rate Sensor," are core components of both "sexual offense" and "silver industry." Thus, in this study, we attempted to discover the differences between the results of general topic modeling and R&D perspective topic modeling. Furthermore, we package social issues from the R&D perspective and present a prototype system, which provides a package of news articles for each R&D issue. Finally, we analyze the quality of R&D perspective topic modeling and provide the results of inter- and intra-topic analysis.

The viewpoint-based product information modeling in collaborative product development (협업적 제품개발에서의 관점기반 제품정보 모델링)

  • 채희권;최영환;김광수
    • Proceedings of the CALSEC Conference
    • /
    • 2003.09a
    • /
    • pp.54-59
    • /
    • 2003
  • The information sharing is essential to make collaboration by participants in the collaboration environment. The sharing of the information is necessary to reduce time-to-market of new Product. In this paper, V2-model is proposed far supporting the sharing of the information on product development. V2-model supports collaborative product development in design and supply chain. Through viewpoints, V2-model supports 1) two-level structure that consist of private level and public level ,2) level-up process and 3) product development process. The public level information supports to share the product information on collaborative supply chain and design. The viewpoints in V2-model are divided into public viewpoints that point to the public level information and private viewpoints that point to the private level information. Private viewpoints are transformed into public viewpoints. The extended Topic Map has B-Topic, S-Topic and View for representing V2-model in this paper. The level-up process of V2-model is implemented through the merging of S-Topics. V2-model is implemented with washing machine model using extended Topic Maps. In this model, the public viewpoints and private viewpoints are represented and the level-up process, which transforms private viewpoints into public viewpoints, is implemented.

  • PDF

Design and Implementation of Topic Map Generation System based Tag (태그 기반 토픽맵 생성 시스템의 설계 및 구현)

  • Lee, Si-Hwa;Lee, Man-Hyoung;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.730-739
    • /
    • 2010
  • One of core technology in Web 2.0 is tagging, which is applied to multimedia data such as web document of blog, image and video etc widely. But unlike expectation that the tags will be reused in information retrieval and then maximize the retrieval efficiency, unacceptable retrieval results appear owing to toot limitation of tag. In this paper, in the base of preceding research about image retrieval through tag clustering, we design and implement a topic map generation system which is a semantic knowledge system. Finally, tag information in cluster were generated automatically with topics of topic map. The generated topics of topic map are endowed with mean relationship by use of WordNet. Also the topics are endowed with occurrence information suitable for topic pair, and then a topic map with semantic knowledge system can be generated. As the result, the topic map preposed in this paper can be used in not only user's information retrieval demand with semantic navigation but alse convenient and abundant information service.

Define the Ontology and Query Language Based on Topic Maps for Service (TM-S : 서비스를 위한 Topic Maps기반의 온톨로지 및 질의 언어 설계)

  • 유정연;이규철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.109-111
    • /
    • 2004
  • 대표적인 시맨틱 웹 서비스 발견 기술은 OWL-S와 MIT의 Process Handbook이 있다. 그러나. OWL-S는 개발 초기 단계이기 때문에, 아직 효과적인 웹 서비스 발견을 제공하기에는 몇 가지 제약 조건을 가지고 있다. 예를 들어. 정보 전송을 위한 제악 조건과 실행에 따른 상태 변환 정보를 정의하고 있지 않다. 또한. 사용자가 원하는 프로세스들의 시맨틱 정보들을 정의하고 있지 않다. 반면, MIT Process Handbook은 OWL-S와 같이 서비스 모델에 대한 상세한 정보들을 정의하고 있지 않아, 서비스 작성에 필요한 서비스들을 찾기가 어렵다. 그러므로, 본 논문에서는 Topic Maps 기반의 TM-S(Topic Maps for Service)를 제안하였다.

  • PDF

Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: focused on LDA and HDP (국내 기록관리학 연구동향 분석을 위한 토픽모델링 기법 비교 - LDA와 HDP를 중심으로 -)

  • Park, JunHyeong;Oh, Hyo-Jung
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.4
    • /
    • pp.235-258
    • /
    • 2017
  • The purpose of this study is to analyze research trends of archives management in Korea by comparing LDA (Latent Semantic Allocation) topic modeling, which is the most famous method in text mining, and HDP (Hierarchical Dirichlet Process) topic modeling, which is developed LDA topic modeling. Firstly we collected 1,027 articles related to archives management from 1997 to 2016 in two journals related with archives management and four journals related with library and information science in Korea and performed several preprocessing steps. And then we conducted LDA and HDP topic modelings. For a more in-depth comparison analysis, we utilized LDAvis as a topic modeling visualization tool. At the results, LDA topic modeling was influenced by frequently keywords in all topics, whereas, HDP topic modeling showed specific keywords to easily identify the characteristics of each topic.

Analysis of Research Topics among Library, Archives and Museums using Topic Modeling (토픽 모델링을 활용한 도서관, 기록관, 박물관간의 연구 주제 분석)

  • Kim, Heesop;Kang, Bora
    • Journal of Korean Library and Information Science Society
    • /
    • v.50 no.4
    • /
    • pp.339-358
    • /
    • 2019
  • The purpose of this study is to understand the topics of the research for the establishment of cooperative platform between libraries, archives, and museums that carry out the common task of providing knowledge information in a broad sense. To achieve the purpose of this study, 637 bibliographic information on three institutions were collected from the Web version of Scopus database. Among the collected bibliographic information, 5,218 words were extracted through NetMiner V.4 and analysed topic modeling. The results are as follows: First, as a result of analyzing the frequency of word appearance according to the tf-idf weight 'Preservation' was the most hottest topic. Second, the topic modeling analysis through LDA(Latent Dirichlet Allocation) algorithm resulted in 13 topic areas. Third, as a result of expressing 13 topic areas as a network, repository construction was the central topic, and the research topics such as cooperation among institutions, conservation environment for collections, system and policy discovery, life cycle of collections, exhibition of information resources, and information retrieval were closely related to the central topic. Fourth, the trend of 13 topic areas by year 1998 is limited to the specific subjects such as system and policy discovery, information retrieval, and life cycle of collections, while the subsequent studies have been carried out after that year.

Topic and Topic Change Detection in Instance Messaging (인스턴트 메시징에서의 대화 주제 및 주제 전환 탐지)

  • Choi, Yoon-Jung;Shin, Wook-Hyun;Jeong, Yoon-Jae;Myaeng, Sung-Hyon;Han, Kyoung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.59-66
    • /
    • 2008
  • This paper describes a novel method for identifying the main topic and detecting topic changes in a text-based dialogue as in Instant Messaging (IM). Compared to other forms of text, dialogues are uniquely characterized with the short length of text with small number of words, two or more participants, and existence of a history that affects the current utterance. Noting the characteristics, our method detects the main topic of a dialogue by considering the keywords not only the utterances of the user but also the dialogue system's responses. Dialogue histories are also considered in the detection process to increase accuracy. For topic change detection, the similarity between the former utterance's topic and the current utterance's topic is calculated. If the similarity is smaller than a certain threshold, our system judges that the topic has been changed from the current utterance. We obtained 88.2% and 87.4% accuracy in topic detection and topic change detection, respectively.

  • PDF

Phrase-based Topic and Sentiment Detection and Tracking Model using Incremental HDP

  • Chen, YongHeng;Lin, YaoJin;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5905-5926
    • /
    • 2017
  • Sentiments can profoundly affect individual behavior as well as decision-making. Confronted with the ever-increasing amount of review information available online, it is desirable to provide an effective sentiment model to both detect and organize the available information to improve understanding, and to present the information in a more constructive way for consumers. This study developed a unified phrase-based topic and sentiment detection model, combined with a tracking model using incremental hierarchical dirichlet allocation (PTSM_IHDP). This model was proposed to discover the evolutionary trend of topic-based sentiments from online reviews. PTSM_IHDP model firstly assumed that each review document has been composed by a series of independent phrases, which can be represented as both topic information and sentiment information. PTSM_IHDP model secondly depended on an improved time-dependency non-parametric Bayesian model, integrating incremental hierarchical dirichlet allocation, to estimate the optimal number of topics by incrementally building an up-to-date model. To evaluate the effectiveness of our model, we tested our model on a collected dataset, and compared the result with the predictions of traditional models. The results demonstrate the effectiveness and advantages of our model compared to several state-of-the-art methods.