KIPS Transactions on Software and Data Engineering
/
v.4
no.12
/
pp.543-548
/
2015
Recently top-k query processing has been extremely important along with the explosion of data produced by a variety of applications. Top-k queries return the best k results ordered by a user-provided monotone scoring function. As cloud computing service has been getting more popular than ever, a hot attention has been paid to cloud-based data outsourcing in which clients' data are stored and managed by the cloud. The cloud-based data outsourcing, though, exposes a critical secuity concern of sensitive data, resulting in the misuse of unauthorized users. Hence it is essential to encrypt sensitive data before outsourcing the data to the cloud. However, there has been little attention to efficient top-k processing on the encrypted cloud data. In this paper we propose a novel top-k processing algorithm that can efficiently process a large amount of encrypted data in the cloud. The main idea of the algorithm is to prune unpromising intermediate results at the early phase without decrypting the encrypted data by leveraging an order-preserving encrypted technique. Experiment results show that the proposed top-k processing algorithm significantly reduces the overhead of client systems from 10X to 10000X.
As a large amount of graph-structured data is widely used in various applications such as social networks, semantic web, and bio-informatics, keyword-based search over graph data has been getting a lot of attention. In this paper, we propose an efficient method for keyword search over graph data to find a set of top-k answers that are relevant as well as non-redundant in structure. We define a non-redundant answer structure for a keyword query and a relevance measure for the answer. We suggest a new indexing scheme on the relevant paths between nodes and keyword terms in the graph, and also propose a query processing algorithm to find top-k non-redundant answers efficiently by exploiting the pre-calculated indexes. We present effectiveness and efficiency of the proposed approach compared to the previous method by conducting an experiment using a real dataset.
Recently, as graph-structured data is widely used in various fields such as social networks and semantic Webs, needs for an effective and efficient search on a large amount of graph data have been increasing. Previous keyword-based search methods often find results by considering only the relevance to a given query. However, they are likely to produce semantically similar results by selecting answers which have high query relevance but share the same content nodes. To improve the diversity of search results, we propose a top-k search method that finds a set of subtrees which are not only relevant but also diverse in terms of the content nodes by controlling their similarity. We define a criterion for a set of diverse answer trees and design two kinds of diversified top-k search algorithms which are based on incremental enumeration and A⁎ heuristic search, respectively. We also suggest an improvement on the A⁎ search algorithm to enhance its performance. We show by experiments using real data sets that the proposed heuristic search method can find relevant answers with diverse content nodes efficiently.
With the development of social network services, graph structures have been utilized to represent relationships among objects in various applications. Recently, a demand of subgraph matching in real-time graph streams has been increased. Therefore, an efficient approximate Top-k subgraph matching scheme for low latency in real-time graph streams is required. In this paper, we propose an approximate Top-k subgraph matching scheme considering data reuse in graph stream environments. The proposed scheme utilizes the distributed stream processing platform, called Storm to handle a large amount of stream data. We also utilize an existing data reuse scheme to decrease stream processing costs. We propose a distance based summary indexing technique to generate Top-k subgraph matching results. The proposed summary indexing technique costs very low since it only stores distances among vertices that are selected in advance. Finally, we provide k subgraph matching results to users by performing an approximate Top-k matching on the summary indexing. In order to show the superiority of the proposed scheme, we conduct various performance evaluations in diverse real world datasets.
Top-k 질의 처리가 사용자가 원하는 데이터를 검색하는 방법인 반면에, Reverse Top-k 질의 처리는 데이터의 관점에서 특정 데이터를 가장 선호할 만한 사용자를 검색하는 방법으로 생산자의 입장에서 매우 중요한 연구이다. 본 논문에서는 Reverse Top-k 질의 처리 방법들을 소개하고 비교 및 문제점을 분석한다.
최근 인터넷의 발달과 사용량의 증가로 데이터의 양이 급증함에 따라 대용량 데이터를 효율적으로 검색하는 top k 질의 처리가 중요시 되고 있다. Layer 기반 방법은 가장 잘 알려진 top k 질의처리 방법이며, 객체의 모든 속성의 값들을 이용하여 객체들을 layer들의 리스트로 구성하는 방법이다. 본 논문에서는 그 중에서 convex hull을 사용하여 layer list를 생성하는 기존 연구를 조사하고 문제점을 파악한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.6
/
pp.2111-2131
/
2015
Tiered wireless sensor network is a network model of flexibility and robustness, which consists of the traditional resource-limited sensor nodes and the resource-abundant storage nodes. In such architecture, collected data from the sensor nodes are periodically submitted to the nearby storage nodes for archive purpose. When a query is requested, storage nodes also process the query and return qualified data as the result to the base station. The role of the storage nodes leads to an attack prone situation and leaves them more vulnerable in a hostile environment. If any of them is compromised, fake data may be injected into and/or qualified data may be discarded. And the base station would receive incorrect answers incurring malfunction to applications. In this paper, an efficient verifiable top-k query processing scheme called EVTQ is proposed, which is capable of verifying the authentication and completeness of the results. Collected data items with the embedded information of ordering and adjacent relationship through a hashed message authentication coding function, which serves as a validation code, are submitted from the sensor nodes to the storage nodes. Any injected or incomplete data in the returned result from a corresponded storage node is detected by the validation code at the base station. For saving communication cost, two optimized solutions that fuse and compress validation codes are presented. Experiments on communication cost show the proposed method is more efficiency than previous works.
This paper proposes an index structure which is used to process X-Path on S-XML data. There are many previous index structures based on tree structure for X-Path processing. Because of general tree index's top-down query fashion, the unnecessary node traversal makes heavy access and decreases the query processing performance. And both of the two query types for X-Path called single-path query and branching query need to be supported in proposed index structure. This method uses a combination of path summary and the node indexing. First, it manages hashing on hierarchy elements which are presented in tag in S-XML. Second, array blocks named path summary array is created in each node of hashing to store the path information. The X-Path processing finds the tag element using hashing and checks array blocks in each node to determine the path of query's result. Based on this structure, it supports both single-path query and branching path query and improves the X-Path processing performance.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.7
/
pp.659-665
/
2001
Relevance feedback is the most popular query reformulation strategy in a relevance feedback cycle, the user is presented with a list of the retrieved documents and, after examining them, marks those which are relevant. In practice, only the top 10(or 20) ranked documents need to be examined. The main idea consists of selecting important terms, or expressions, attached to the documents that have been identified as relevant by the user, and of enhancing the importance of these terms in a new query formulation. The expected effect is that the new query will be moved towards the relevant documents and away from the non-relevant ones. Local analysis techniques are interesting because they take advantage of the local context provided with the query. In this regard, they seem more appropriate than global analysis techniques. In a local strategy, the documents retrieved for a given query q are examined at query time to determine terms for query expansion. This is similar to a relevance feedback cycle but might be done without assistance from the user.
Journal of Information Science Theory and Practice
/
v.9
no.2
/
pp.1-17
/
2021
Pseudo relevance feedback (PRF) is a powerful query expansion (QE) technique that prepares queries using the top k pseudorelevant documents and choosing expansion elements. Traditional PRF frameworks have robustly handled vocabulary mismatch corresponding to user queries and pertinent documents; nevertheless, expansion elements are chosen, disregarding similarity to the original query's elements. Word embedding (WE) schemes comprise techniques of significant interest concerning QE, that falls within the information retrieval domain. Deep averaging networks (DANs) defines a framework relying on average word presence passed through multiple linear layers. The complete query is understandably represented using the average vector comprising the query terms. The vector may be employed for determining expansion elements pertinent to the entire query. In this study, we suggest a DANs-based technique that augments PRF frameworks by integrating WE similarities to facilitate Arabic information retrieval. The technique is based on the fundamental that the top pseudo-relevant document set is assessed to determine candidate element distribution and select expansion terms appropriately, considering their similarity to the average vector representing the initial query elements. The Word2Vec model is selected for executing the experiments on a standard Arabic TREC 2001/2002 set. The majority of the evaluations indicate that the PRF implementation in the present study offers a significant performance improvement compared to that of the baseline PRF frameworks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.