• Title/Summary/Keyword: Top Event

Search Result 173, Processing Time 0.034 seconds

Diagnosis of Compressor Failure by Fault Tree Analysis (FTA기법을 이용한 콤프레서 고장진단)

  • 배용환;이석희;최진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.127-138
    • /
    • 1994
  • The application of fault tree technique to the analysis of compressor failure is considered. The techniques involve the decomposition of the system into a form of fault tree where certain basic events lead to a specified top event which signifies the total failure of the system. In this paper, fault trees are made by using fault train of screw type air compressor failure. The fault trees are used to obtain minimal cut sets from the modes of system failure and, hence the system failure rate for the top event can be calculated. The method of constructing fault trees and the subsequent estimation of reliability of the system is illustrated through compressor failure. It is proved that FTA is efficient to investigate the compressor failure modes and diagnose system.

Minimal Cut Set of Electric Power Installations using Fault Tree Analysis (FTA를 이용한 수변전설비의 최소절단집합 도출)

  • Park, Young-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, from making an electrical fire which is thought to be the most damaging among potential dangers as a top event, minimal cut sets (MCS) about it were analyzed. For this, components of a power substation were classified into 15 items. Failure rates and modes were extracted based on Korea Electrical Safety Corporation, IEEE Gold Book, and RAC. To analyze the top event (an electrical fire), main events were assorted into "safety devices for overcurrent" and "ampere meter of detecter". Failure of components was divided into failure of VCB, COS, and MCCB. A fault tree was composed of 3 AND gate, 5 OR gates and 17 basic events. Overlapped events among the basic events are things which occur from relevant components. They were attached to the tree by distinguishing identifiers. In case of FT, two minimal cut sets of "IO_METER", "MF_METER", "DO_MCCB" and "IO_METER", "MF_METER", "DO_VCB" take 46% of electrical fires. Therefore, about basic events which are included in the top two minimum cut sets, strict control is necessary.

A Study on the RAMS Analysis of Urban Maglev Train Control System (도시형자기부상열차 열차제어시스템 RAMS 분석에 관한 연구)

  • Yun, Hak-Sun;Lee, Key-Seo;Ryou, Sung-Kyun;Yang, Dong-In
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.515-525
    • /
    • 2011
  • In this study, Urban maglev is applied to inductive-loop speed and position detection system for the top-level classification system for the entire system, and performed functional analysis On-board signal equipment, Wayside-signal equipment divided by the reliability, availability, maintainability, and safety through analysis of the proposed formula. RDB and by applying a system service for each device was calculated to availability, safety analysis. The PHA, FMEA, HAZOP over the Top Event of the FTA is performed by presenting the results. This also shows approach methods and relative activities for project to accomplish and ensure the system requirements.

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

Risk Assessment and Application in Chemical Plants Using Fault Tree Analysis (FTA를 이용한 화학공장의 위험성 평가 및 응용)

  • Kim Yun-Hwa;Kim Ky-Soo;Yoon Sung-Ryul;Um Sung-In;Ko Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • This study is to estimate the possibility of accident in chemical plants from the analysis of system component which affects the occurrence of top event. Among the various risk assessment techniques, the Fault Tree Analysis which approaches deductively on the route of accident development was used in this study. By gate-by-gate method and minimal cut set, the qualitative and quantitative risk assessment for hazards in plants was performed. The probability of occurrence and frequency of top event was calculated from failure or reliability data of system components at stage of the quantitative risk assessment. In conclusion, the probability of accident was estimated according to logic pattern based on the Fault Tree Analysis. And the failure path which mostly influences on the occurrence of top event was found from Importance Analysis.

  • PDF

Topic Similarity-based Event Routing Algorithm for Wireless Ad-Hoc Publish/Subscribe Systems (Ad-Hoc 무선 환경의 발행/구독 시스템을 위한 구독주제 유사도 기반의 이벤트 라우팅 알고리즘)

  • Nguyen, Hieu Trung;Oh, Sang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.11-22
    • /
    • 2009
  • For a wireless ad-hoc network, event routing algorithm of the publish/subscribe system is especially important for the performance of the system because of the dynamic characteristic and constraint network of its own. In this paper, we propose a new hybrid event routing algorithm. TopSim for efficient publish/subscribe system on the wireless ad-hoc network by extending the ShopParent algorithm by considering not only network overheads to choose a Parent of the publish/subscribe tree, but also topic similarity which is closeness of subscriptions. Our evaluation shows our proposed TopSim performs better for the case where a new joining node subscribed to the multiple topics and there is a node among Parent candidate nodes who subscribe to the ones in the list of multiple topics (related topics).

Development of Integrated Method and Tool for Railway Risk Assessment (철도 위험도 통합 평가 방법 및 도구 개발)

  • Han, Sang-Hoon;Ahn, Kwang-Il;Wang, Jong-Bae;Lee, Ho-Joong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1132-1139
    • /
    • 2006
  • Railway risk is evaluated by a method of linking event trees and fault trees as the general PSA(Probabilistic Safety Assessment) model for the risk assessment of complex systems. Accident scenarios causing undesirable events are modeled by event trees comprised of several accident sequences. Each branch located in the accident progression of the event tree is modeled by an fault tree or can be represented by some value too simply. We usually evaluate the frequency of the whole sequence by adding them after calculating the frequency of each sequence at a time. However, since there are quite a number of event trees and fault trees in the railway risk assessment model, the number of sequence to evaluate increases and preparation for the risk assessment costs much time all the more. Also, it may induce errors when analysts perform the work of quantification. Therefore, the systematic maintenance and control of event trees and fault trees will be essential for the railway risk assessment. In this paper we introduce an integrated assessment method using one-top model and develop a risk assessment tool for the maintenance and control of the railway risk model.

  • PDF

THE APPLICATION OF PSA TECHNIQUES TO THE VITAL AREA IDENTIFICATION OF NUCLEAR POWER PLANTS

  • HA JAEJOO;JUNG WOO SIK;PARK CHANG-KUE
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.259-264
    • /
    • 2005
  • This paper presents a vital area identification (VAI) method based on the current fault tree analysis (FTA) and probabilistic safety assessment (PSA) techniques for the physical protection of nuclear power plants. A structured framework of a top event prevention set analysis (TEPA) application to the VAI of nuclear power plants is also delineated. One of the important processes for physical protection in a nuclear power plant is VAI that is a process for identifying areas containing nuclear materials, structures, systems or components (SSCs) to be protected from sabotage, which could directly or indirectly lead to core damage and unacceptable radiological consequences. A software VIP (Vital area Identification Package based on the PSA method) is being developed by KAERI for the VAI of nuclear power plants. Furthermore, the KAERI fault tree solver FTREX (Fault Tree Reliability Evaluation eXpert) is specialized for the VIP to generate the candidates of the vital areas. FTREX can generate numerous MCSs for a huge fault tree with the lowest truncation limit and all possible prevention sets.

An Analysis of Human Reliability Represented as Fault Tree Structure Using Fuzzy Reasoning (Fault Tree구조로 나타낸 인간신뢰성의 퍼지추론적해석)

  • 김정만;이동춘;이상도
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.113-127
    • /
    • 1996
  • In Human Reliability Analysis(HRA), the uncertainties involved in many factors that affect human reliability have to be represented as the quantitative forms. Conventional probability- based human reliability theory is used to evaluate the effect of those uncertainties but it is pointed out that the actual human reliability should be different from that of conventional one. Conventional HRA makes use of error rates, however, it is difficult to collect data enough to estimate these error rates, and the estimates of error rates are dependent only on engineering judgement. In this paper, the error possibility that is proposed by Onisawa is used to represent human reliability, and the error possibility is obtained by use of fuzzy reasoning that plays an important role to clarify the relation between human reliability and human error. Also, assuming these factors are connected to the top event through Fault Tree structure, the influence and correlation of these factors are measured by fuzzy operation. When a fuzzy operation is applied to Fault Tree Analysis, it is possible to simplify the operation applying the logic disjuction and logic conjuction to structure function, and the structure of human reliability can be represented as membership function of the top event. Also, on the basis of the the membership function, the characteristics of human reliability can be evaluated by use of the concept of pattern recognition.

  • PDF

Safety Assessment for PCS of Photovoltaic and Energy Storage System Applying FTA (FTA를 적용한 태양광 발전 및 ESS 연계형 PCS의 안전성 평가)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Kim, Eui-Sik;Nam, Ki-Gong;Jeong, Cheon-Kee
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.14-20
    • /
    • 2019
  • This paper presents a safety assessment based approach for the safe operation for PCS(Power Conditioning System) of photovoltaic and energy storage systems, applying FTA. The approach established top events as power outage and a failure likely to cause the largest damage among the potential risks of PCS. Then the Minimal Cut Set (MCS) and the importance of basic events were analyzed for implementing risk assessment. To cope with the objects, the components and their functions of PCS were categorized. To calculate the MCS frequency based on IEEE J Photovolt 2013, IEEE Std. 493-2007 and RAC (EPRD, NPRD), the failure rate and failure mode were produced regarding the basic events. In order to analyze the top event of failure and power outage, it was assumed that failures occurred in DC breaker, AC breaker, SMPS, DC filter, Inverter, CT, PT, DSP board, HMI, AC reactor, MC and EMI filter and Fault Tree was drawn. It is expected that the MCS and the importance of basic event resulting from this study will help find and remove the causes of failure and power outage in PCS for efficient safety management.