• Title/Summary/Keyword: Tooth simulation

Search Result 120, Processing Time 0.024 seconds

An Efficient Virtual Teeth Modeling for Dental Training System

  • Kim, Lae-Hyun;Park, Se-Hyung
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.41-44
    • /
    • 2009
  • This paper describes an implementation of virtual teeth modeling for a haptic dental simulation. The system allows dental students to practice dental procedures with realistic tactual feelings. The system requires fast and stable haptic rendering and volume modeling techniques working on the virtual tooth. In our implementation, a volumetric implicit surface is used for intuitive shape modification without topological constraints and haptic rendering. The volumetric implicit surface is generated from input geometric model by using a closest point transformation algorithm. And for visual rendering, we apply an adaptive polygonization method to convert volumetric teeth model to geometric model. We improve our previous system using new octree design to save memory requirement while increase the performance and visual quality.

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

Assessment of Wear Resistance in Tooth-Colored Materials for Primary Molar Crown Restoration in Pediatric Dentistry

  • Hyun Seok Kang;Yooseok Shin;Chung-Min Kang;Je Seon Song
    • 대한소아치과학회지
    • /
    • 제51권1호
    • /
    • pp.22-31
    • /
    • 2024
  • The objective of this study was to assess the wear resistance of tooth-colored materials used in crown restoration for primary molars with a chewing simulator. In this study, four groups-three experimental groups and one control group-were included. They consisted of three-dimensional (3D) printed resin crowns (NextDent and Graphy), milled nano-hybrid ceramic crowns (MAZIC Duro), and prefabricated zirconia crowns (NuSmile). Twelve mandibular second molar specimens were prepared from each group. In the wear experiment, 6.0 × 105 cycles were conducted with a force of 50 N, and a 6 mm-diameter steatite ball was used as an antagonist. The amount of wear was calculated by comparing the scan files before and after the chewing simulation using 3D metrology software, and the worn cross-section was confirmed by scanning electron microscopy (SEM). The resin and ceramic groups did not exhibit any statistically significant differences. However, compared to other crown groups, the zirconia crown group demonstrated notably reduced levels of wear (p < 0.05). In SEM images, layers and cracks were observed in the 3D-printed resin crown groups, which differed from those in the other groups.

Construction of Abalone Sensory Texture Evaluation System Based on BP Neural Network

  • Li, Xiaochen;Zhao, Yuyang;Li, Renjie;Zhang, Ning;Tao, Xueheng;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.790-803
    • /
    • 2019
  • The effects of different heat treatments on the sensory characteristics of abalones are studied in this study. In this paper, the sensory evaluation of abalone samples under different heat treatment conditions is carried out, and the evaluation results are analyzed. The three-dimensional (3D) scanning and reverse engineering are used in tooth modeling of the sensory evaluation of abalone samples under different heat treatment conditions. Besides, the chewing movement models are simplified into three modes, including the cutting mode, compressing mode and grinding mode, which are simulated using finite element simulation. The elastic modulus of the abalone samples is obtained through the compression testing using a texture analyzer to distinguish their material properties under different heat treatments and to obtain simulated mechanical parameters. Finally, taking the mechanical parameters of the finite element simulation of abalone chewing as input and sensory evaluation parameters as the output, BP neural network is established in which the sensory texture evaluation model of abalone samples is obtained. Through verification, the neural network prediction model can meet the requirements of food texture evaluation, with an average error of 9.12%.

Counter Flow 방식의 랙 다이를 이용한 고정 밀도 Worm 전조기술 개발 (Development of Form Rolling Technology for High Precision Worm Using the Rack Dies of Counter Flow Type)

  • 고대철;이정민;김병민
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.57-64
    • /
    • 2004
  • The objective of this study is to suggest the form rolling technology to produce high precision worm on the base of three dimensional finite element simulation and experiment. It is important to determine the initial workpiece diameter in form rolling because it affects the quality of tooth profile. The calculation method of the initial workpiece diameter in form rolling is suggested and it is verified by finite element simulation. The form rolling processes of worm shaft used as automotive part using both the rack dies of counter flow type and the roll dies are considered and simulated with the same numerical model as actual process by the commercial finite element code, BEFORM-3D. Deformation modes of workpiece between the form rolling by the rack dies of counter flow type and the roll dies are investigated from the result of simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The surface roughness, the straightness and the profile of worm are measured precisely using the worm shafts obtained from experiment. The results of simulation and experiment in this study show that the form rolling process of worn shaft using the rack dies is decidedly superior to that using roll dies from the aspect of the precision of worm such as the surface roughness, the straightness and the profile of worm.

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • Mitov, Gergo;Anastassova-Yoshida, Yana;Nothdurft, Frank Phillip;See, Constantin von;Pospiech, Peter
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

치과임상용 가상현실 시뮬레이션에서 사용자의 숙련도 수준이 과제부하와 사용용이성에 미치는 영향 (The Effects of Expertise Level on Task Load and Easy-to-use in Virtual Reality Based Dental Clinical Simulation)

  • 정무석;임태형;류지헌
    • 한국콘텐츠학회논문지
    • /
    • 제21권8호
    • /
    • pp.258-270
    • /
    • 2021
  • 이 연구는 치의학 교육을 위한 부정교합 진찰용 가상현실 시뮬레이션의 적용 효과를 검증하기 위한 것이다. 부정교합 진단을 위해서는 치아모형을 사실적인 수준으로 만들어야 하며 이렇게 개발된 치아모형을 손으로 쥐고 상세하게 관찰할 수 있어야 한다. 이 연구에서는 치의학 가상현실 시뮬레이션을 만들기 위한 4단계 모델링 절차를 적용했다. 또한 이렇게 개발된 가상현실 시뮬레이션이 학습자의 숙달수준에 따라서 어떻게 지각되는가를 확인하기 위해서 HMD를 착용하고 진단을 하도록 했다. 이 연구에는 치의학전문대학원 재학생 3학년(29명), 4학년(29명), 치의학 전공의(28명)이 참여했으며, 두 가지 증례에 대한 진단활동을 통해서 과제부하와 사용용이성을 측정했다. 과제부하에 대한 검증에서 3학년이 전공의보다 더 많은 정신적 요구량과 당혹감을 지각하고 있었다. 이 결과는 시뮬레이션을 사용할 때 숙달수준에 따라서 지각하는 과제부하가 달라지고 있음을 보여주는 것이다. 반면에 사용용이성(구강모형의 조작, 오류수정, 오류인식)에서 4학년이 전공의보다 더 높은 용이성 지각을 보여줬다. 이 연구를 통하여 전문 훈련용 가상현실 시뮬레이션의 개발을 위한 함의점을 논의하였다.

미성숙 치아 모델에서 포스트의 종류와 크기가 치아의 파절 저항성에 미치는 영향에 관한 연구 (INFLUENCE OF POST TYPES AND SIZES ON FRACTURE RESISTANCE IN THE IMMATURE TOOTH MODEL)

  • 김종현;박성호;박정원;정일영
    • Restorative Dentistry and Endodontics
    • /
    • 제35권4호
    • /
    • pp.257-266
    • /
    • 2010
  • 본 연구의 목적은 미성숙 우치를 가타퍼챠 및 다양한 포스트와 코아 시스템을 이용하여 수복한 후 술식에 따른 파절 강도를 측정하였다. 우치의 백악상아경계 상방 8 mm, 하방 12 mm 지점을 절단하여 제작한 미성숙 우치 모델에서 가타퍼챠와 이원중합형 복합레진 LuxaCore로 코어 수복을 시행하거나, 각각 D.T. LIGHT-POST, ParaPost XT 및 다양한 크기의 EverStick Post와 LuxaCore로 수복하였다. 이후 시편을 72시간 동안 증류수에 저장한 후 6,000회의 thermocycling을 진행하였다. 실험적으로 치주인대의 물성을 재현하고, Instron에 시편을 45도로 위치시켜 압축부하를 가해 파절 강도를 측정하고, 파절 부위를 분석하였다. 실험 결과, 포스트를 이용하여 수복하였을 때 파절 강도가 통계적으로 유의하게 증가하였고(p < 0.05), 포스트의 종류 및 적합도는 결과에 통계적으로 유의한 차이를 나타내지 않았다. 대부분의 시편에서 수복 가능한 파절이 나타났으며, 실험군에 따른 파절 부위의 유의한 차이는 나타나지 않았다. 이상의 결과로 볼 때 미성숙 치아의 상기 치근 강화 술식은 치아의 파절 강도를 증가시키고, 포스트의 종류 및 적합도는 파절 저항성에 거의 영향을 미치지 않는 것으로 나타났다.

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation

  • Xu, Gang;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.355-372
    • /
    • 2011
  • Based on the fully nonlinear velocity potential theory, the liquid sloshing in a three dimensional tank under random excitation is studied. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing scheme, B-spline curve, is applied to both the longitudinal and transverse directions of the tank to eliminate the possible saw-tooth instabilities. When the tank is undergoing one dimensional regular motion of small amplitude, the calculated results are found to be in very good agreement with linear analytical solution. In the simulation, the normal standing waves, travelling waves and bores are observed. The extensive calculation has been made for the tank undergoing specified random oscillation. The nonlinear effect of random sloshing wave is studied and the effect of peak frequency used for the generation of random oscillation is investigated. It is found that, even as the peak value of spectrum for oscillation becomes smaller, the maximum wave elevation on the side wall becomes bigger when the peak frequency is closer to the natural frequency.