• 제목/요약/키워드: Tool-based Approach

Search Result 1,105, Processing Time 0.035 seconds

Development of Evaluation Method for Environmental Friendly Property in National Highway (일반국도의 환경친화성 평가방법론 개발)

  • Jeon, Woo-Hoon;Lee, Young-Ihn
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.87-92
    • /
    • 2010
  • As the Concept "how environmental friendly" becomes more and more important in road construction. However, so far there is no estimation method. Environmental friendly concept can be incorporated at the plan level in order to influence decision making, and support policies that affect environment. The overall goal of this study was to develop environmental friendly concept measures for the national highway and to develop a methodology to implement a more environmental friendly concept. The research identified 8 performance measures through a project analysis that could address environmental impact assessment system's ten strategic goals - Topography, Wildlife, hydrology, landuse, air quality, water quality, soil, waste, noise, landscape. The qualitatively and quantitatively evaluation approach was selected as the decision support framework and performance measure were investigated using the AHP(Analytic Hierarchy Process) and pilot corridor for a 10 section and calculate the index values. The methodology was applied to a pilot corridor comprised of a 120km section of national highway in korea. The methodology made it possible to identify the specific performance measures that need improvement to enhance the overall environmental friendly concept. It is fairly intuitive, based on readily available data, and is easy to apply. It provides a powerful tool for government to assess the relative environmental friendly conceptof their transportation corridors now and in the future. It allows for comparisons within a corridor and with other corridors and identifies the improvements needed to enhance the environmental friendly concept.

The Crisis of Climate Change and the Direction of Christian Ecological Education (기후변화의 위기와 기독교 생태교육의 방향 모색)

  • Cho, Miyoung
    • Journal of Christian Education in Korea
    • /
    • v.67
    • /
    • pp.415-447
    • /
    • 2021
  • The purpose of this study is to explore the direction that Christian education should take as an ecological education in the crisis of climate change. What climate change shows is that it is impossible to survive even if the Earth's temperature rises by only 2-3 degrees. However, our current appearance is concerned about the crisis of climate change as long as we do not change our lives. First, the meaning of climate change and its causes were examined. The anthropocentric worldview, modern industrial, scientific and technological growth, and consumption-oriented social structure can be cited as the causes. An anthropocentric worldview justifies everything from the human point of view, and nature is the subject of human domination, but one regarded as a tool. In addition, as the scale of human economic activity increases, energy consumption increases, and the threat of ecosystem destruction increases with the increase in energy consumption. Individual affluence and increased consumption are exacerbating ecosystem tensions. In order to solve the problem of climate change, ecological education clues were found in the Bible. Through creation, the relationship between humans and nature was identified as coexistence and coexistence. Through the principle of sabbath, it is possible to bring about the restoration of humans and nature, and from the point of view of the incarnation, the world was understood as the 'body' of God. Based on these clues, the direction of Christian ecological education was explored by suggesting a transition to an ecological paradigm, restoration of creative spirituality, and cultivation of ecological imagination. In the crisis of climate change, it is hoped that the recovery of the earth will take place and that we will be able to stand again as a responsible being through the Christian ecological educational approach.

Effects of Therapeutic Interventions on Upper Extremity Function Among Children With Cerebral Palsy in Domestic: A Systematic Review (국내 뇌성마비 아동의 상지기능 향상을 위한 중재효과에 대한 고찰)

  • Park, Young-Ju
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2018
  • Objective : The purpose of this study is to examine the effects of therapeutic interventions on upper extremity function of children with cerebral palsy using systematic review methods and to suggest intervention trends in Korea. Methods : The subjects of the study were the researches published in the Korean Journal since 2008. Total 12 studies were selected through Korean research database engine such as DBpia, Scholar, KSDC, KISS and RISS for the systematic review. Key words were 'cerebral palsy', 'upper extremity function' and 'hand function'. The results of this study were analyzed by qualitative level and methodological quality level of evidence, and the results of each study were analyzed according to the PICO approach, that is Patient, Intervention, Comparison and Outcome. Results : For the level of evidence, Grade IV and V were most frequent. In terms of methodological quality, majority of the studies showed 'Fair' level. The subjects were the children with hemiplegia, and Single-subjects designs and case studies were frequent experimental design. Constraint-induced movement therapy (CIMT) was most frequently conducted among the intervention studies, and Jebsen-Taylor Hand Function Test was most frequently used evaluation tool. Eleven studies showed that the upper limb functions were significantly improved or were positively effective. Conclusion : Various intervention methods have been implemented to improve the upper limb functions of children with cerebral palsy. In the future, studies on intervention methods based on the type of paralysis and studies with high quality of evidence should be conducted in Korea.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Development and Instructional Effect of Digital Textbook for the Biological Evolution Unit in Middle School Science (중학교 '진화' 단원 디지털 교재 개발 및 적용)

  • Jeong, Yu-na;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.1
    • /
    • pp.89-99
    • /
    • 2019
  • The purpose of this study is to investigate the effect of students' formation of evolutionary concept and learning on the development of digital teaching materials. The explanation of biological evolution, which explains the changes that living organisms undergo over a long period of time, can provide various contents for use in a book. The production and editing of images in digital textbooks would provide explanation of difficult concepts in a fun way. For this study, we designed instructional materials consisting of four class hours using iBooks Author, an electronic book authoring tool based on the 5E learning cycle model. In order to verify the effectiveness of the developed digital textbooks, we compared instructions by the general textbooks to those using digital textbooks. Both teaching through general textbook form and teaching using digital textbook materials had a significant effect on the formation of the concept of evolution, but interest in biological science and evolution increased significantly only in the group taught using digital textbooks. As a result of testing the instruction effect by the digital textbooks by classifying the students by type, the group that is familiar with smart devices was more active and interesting in class depending on digital literacy. The satisfaction of the developed digital textbooks also showed a positive score in the group with high digital literacy. The results of this study suggest that the development of digital textbooks in the unit of evolution can be an instructional material for easy and interesting approach to difficult concepts in the teaching of evolution.

In Newton's proof of the inverse square law, geometric limit analysis and Educational discussion (Newton의 역제곱 법칙 증명에서 기하학적 극한 분석 및 교육적 시사점)

  • Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.2
    • /
    • pp.173-190
    • /
    • 2021
  • This study analyzed the proof of the inverse square law, which is said to be the core of Newton's , in relation to the geometric limit. Newton, conscious of the debate over infinitely small, solved the dynamics problem with the traditional Euclid geometry. Newton reduced mechanics to a problem of geometry by expressing force, time, and the degree of inertia orbital deviation as a geometric line segment. Newton was able to take Euclid's geometry to a new level encompassing dynamics, especially by introducing geometric limits such as parabolic approximation, polygon approximation, and the limit of the ratio of the line segments. Based on this analysis, we proposed to use Newton's geometric limit as a tool to show the usefulness of mathematics, and to use it as a means to break the conventional notion that the area of the curve can only be obtained using the definite integral. In addition, to help the desirable use of geometric limits in school mathematics, we suggested the following efforts are required. It is necessary to emphasize the expansion of equivalence in the micro-world, use some questions that lead to use as heuristics, and help to recognize that the approach of ratio is useful for grasping the equivalence of line segments in the micro-world.

Status of Groundwater Potential Mapping Research Using GIS and Machine Learning (GIS와 기계학습을 이용한 지하수 가능성도 작성 연구 현황)

  • Lee, Saro;Fetemeh, Rezaie
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1277-1290
    • /
    • 2020
  • Water resources which is formed of surface and groundwater, are considered as one of the pivotal natural resources worldwide. Since last century, the rapid population growth as well as accelerated industrialization and explosive urbanization lead to boost demand for groundwater for domestic, industrial and agricultural use. In fact, better management of groundwater can play crucial role in sustainable development; therefore, determining accurate location of groundwater based groundwater potential mapping is indispensable. In recent years, integration of machine learning techniques, Geographical Information System (GIS) and Remote Sensing (RS) are popular and effective methods employed for groundwater potential mapping. For determining the status of the integrated approach, a systematic review of 94 directly relevant papers were carried out over the six previous years (2015-2020). According to the literature review, the number of studies published annually increased rapidly over time. The total study area spanned 15 countries, and 85.1% of studies focused on Iran, India, China, South Korea, and Iraq. 20 variables were found to be frequently involved in groundwater potential investigations, of which 9 factors are almost always present namely slope, lithology (geology), land use/land cover (LU/LC), drainage/river density, altitude (elevation), topographic wetness index (TWI), distance from river, rainfall, and aspect. The data integration was carried random forest, support vector machine and boost regression tree among the machine learning techniques. Our study shows that for optimal results, groundwater mapping must be used as a tool to complement field work, rather than a low-cost substitute. Consequently, more study should be conducted to enhance the generalization and precision of groundwater potential map.

Exploring Learning Effects of Elementary Students in a Geological Field Trip Activity concerning 'Minerals and Rocks' - Focus on Novelty Space - ('광물과 암석' 관련 야외지질학습에서 초등학생들의 학습 효과에 대한 탐색 - 생소한 경험 공간을 중심으로 -)

  • Choi, Yoon-Sung;Kim, Jong-Uk
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.430-445
    • /
    • 2022
  • The purpose of this study was to explore the learning effects in elementary school students who participated in a geological field trip conducted under the theme 'minerals and rocks', focusing on novelty space. A total of 10 sixth-grade students participated in this program held at a public elementary school in Seoul as part of after-school club activities. Students observed mineral and rock samples in a classroom and outdoor learning environment. The authors collected activity papers (texts, drawing), researchers' participation notes, video and audio recordings containing the study participants' activities, and post-interview data To analyze the learning effects in the cognitive domain of students, the observation analysis framework for rock classification of Remmen and Frøyland (2020) and the rock description analysis framework of Oh (2020) were used. Additionally, to explore the learning effects of psychological and geographic areas, students' drawings, texts, discourses, and interview data were inductively analyzed. The results showed that the students demonstrated 'everyday' and 'transitional' observations in the classroom learning environment, while in the outdoor learning environment (school playground, community-based activities), they demonstrated 'transitional' and 'scientific' observations. Moreover, as the scientific observation stage progressed, more types of descriptive words for rocks were used. In terms of psychological and geographic aspects, students showed their selection of places to explore familiar outdoor learning environments, positive perceptions of outdoor learning, and aesthetic appreciation. Finally, this study not only discussed novelty space as a tool for analyzing students' learning effects but also suggested the need for an academic approach considering new learning environments, such as learning through virtual field trips.

The Perception and Needs Analysis of Early Childhood Teachers for Development of a Play-Based Artificial Intelligence Education Program for 5-Year-Olds (만 5세 대상 놀이중심 인공지능 교육 프로그램 개발을 위한 유아교사의 인식과 요구분석)

  • Park, Jieun;Hong, Misun;Cho, Jungwon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-59
    • /
    • 2022
  • We analyze the perceptions and requirements of early childhood teachers for artificial intelligence(AI) education to develop an AI education program for 5-year-olds. As for the research methodology, we conducted a survey and an in-depth interview to extract the AI educational elements centering on the analysis stage, the first stage of the ADDIE model. The research result is that first, it is necessary to design a curriculum that combines the contents of early childhood education and AI education to be naturally accepted as AI education for 5-year-olds. Second, an evaluation tool for AI education that can showcase the teacher's reflection should be developed systematically. Third, it is necessary to support a play-centered AI education support and environment for early childhood teachers. Lastly, it is essential to establish a system that can be continuously operated in the field of early childhood education in consideration of AI education in the non-curricular curriculum. It is expected that in the future, a play-oriented AI education program for 5-year-olds will be developed to spread awareness of AI education for infants and present an AI education approach for each age and stage of learners.

Improvement of Silkworm Egg Microinjection Using 3D Printing Technology (3D 프린팅 기술을 이용한 누에 알 미세주입 기술 개선)

  • Jeong, Chan Young;Lee, Chang Hoon;Seok, Young-Seek;Yong, Sang Yeop;Kim, Seong-Wan;Kim, Kee Young;Park, Jong Woo
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.249-254
    • /
    • 2022
  • Silkworms, which have for long been used as an insect resource for industrialization, have recently attracted attention as potential bio-factories for the production of novel biomaterials. In this regard, material production is typically achieved based on transformation technology, mediated via microinjection, in which a target gene is inserted into eggs containing an embryo. However, an essential step in the microinjection procedure is egg fixation, which can be a time-consuming and laborious task. Therefore, in this study, using the 3DCADian program, we adopted a 3D printing approach to model egg liners and glue drawers, which can contribute to facilitating egg alignment and fixation, thereby enhancing transformation efficiency by reducing time consumption and fatigue. After rendering using Fusion 360, the two supplementary tools were produced by printing with nylon resin (PA12) and Sinterit Lisa Pro. Subsequent analysis of the time required to fix eggs on glass slides using the two manufactured tools, revealed that the processing time was reduced by approximately 18.6% when the two tools were used compared with when these tools were not used. These innovations not only reduced fatigue but also contributed to more effective use of the microscope and manipulator for microinjection. Consequently, we believe that with additional research and refinement, the egg liner and glue drawer developed in this study could be used to enhance silkworm transformation efficiency and study similar transformation systems in other industrial insects.