• 제목/요약/키워드: Tool rotation speed

검색결과 122건 처리시간 0.025초

알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향 (The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel)

  • 김남규;김병철;정병훈;송상우;;강정윤
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

AlTiN 코팅 층수에 따른 볼 엔드밀의 마모특성에 관한 연구 (A Study on the Wear Characteristics of the Ball End Mill According to the AlTiN Coated Layers)

  • 조규재;이승철
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.54-61
    • /
    • 2010
  • In this research KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, surface roughness, and the wear of tool were studied.

AlTiN코팅공구를 사용한 플라스틱금형강의 기계가공성 평가 (Machinability Evaluation of the Plastic Mould Steel using AlTiN Coated Tool)

  • 이승철;조규재
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.629-635
    • /
    • 2009
  • In this research, KP-4, one of the plastic mold steels, was coated with the AlTiN from one layer to four layers by the PVD method in the $\Phi$ 8mm cemented carbide ball end mill. Coated KP-4 was processed with various conditions. For example, slope of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ the spindle rotation speed was changed from 10,000rpm to 16,000rpm, the tool feeding speed was changed from 1,300mm/min to 1,700mm/min, the depth of cut was also changed from 0.3mm to 0.9mm, and etc. Cutting component force according to the coating layer number, and surface roughness were studied. The cutting component force showed a good agreement better the up ward direction than the down ward direction under all experimental conditions. In case of the condition per the material shape, it was lessen when the tool have larger angle because the average effective diameter of the tool is larger. The surface roughness showed good condition in case of the up ward than the down ward direction. And, in the 3rd layer of AlTiN coating, it showed the most suitable condition.

  • PDF

금형의 고정도ㆍ고능률 가공기술 (Advanced Machining Technology for Die Manufacturing)

  • 김정석;이득우;정융호;강명창;이기용;김경균;김석원
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.48-68
    • /
    • 2000
  • The high-speed machining technology of difficult-to-cut material is needed to achieve the high-efficiency of die manufacturing. The high-speed machining is applied in automobile, airplane and electricityㆍelectro industry etc, because it can improve machining efficiency and productivity with high speed, high power and high rotation. In this study, high speed machinability, tool wear characteristics and its monitoring, characteristics of damaged layer, machinability of difficult-to-cut material, characteristics of a free curved surface and method of CAD/CAM system were introduced to acquire the shortening of machining time, the improvement of machining efficiency and the high quality of machined surface. Therefore, we establish the stabilization condition of difficult-to-cut material machining and present the optimal cutting condition for high-efficiency cutting.

  • PDF

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

Incremental Forming 기술을 적용한 Damper Case 생산 기술 개발에 관한 연구 (The Study for Development of Damper Case Production Technique using Incremental Forming)

  • 박정호;이태원;정영덕
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.72-78
    • /
    • 2011
  • Currently, for the damper case, the material produced by cast/forge welding is mechanically processed and then the final product is mass-produced. By cutting the cast/forge welded material, the issues of excessive cutting time, multiple process production, and a large amount of chips (40% loss from the original material) arise, causing increased production cost and reduced profitability. Thus, in this study, the incremental forming technology which generates no chips was applied in production. Analysis was excuted for 1st and 2nd works by change of tool diameter and working tool. For this, 3D molding and analysis were executed, which was applied to the processing the result, successful processing could be achieved through a few trials of molding processing according to tool forming and rotation counts.

직교배열법에 의한 AZ31 마그네슘 합금의 마찰교반접합 특성 (Friction Stir Welding Characteristics of AZ31 Mg Alloy by Orthogonal Array)

  • 강대민;박경도;강정윤
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.16-21
    • /
    • 2012
  • Magnesium alloy has been focussed as lightweight material owing to its high strength even though low density with aluminum alloy, titanium alloy and plastic material. Friction stir welding technique was performed by rotating and plunging a shouldered tool with a small diameter pin into the joint line between two butted plates and useful to join magnesium alloy. In this paper, the experiments of friction stir welding were done to investigate the joint characteristics of AZ31 magnesium alloy. For its evaluation, the orthogonal array method$(L_{27}(3^{13}))$ was applied with four factors of pin diameter, shoulder diameter, travel speed and rotation speed of tool and also three levels of each factor. Nine tools were worked through shoulder diameter of 9, 12, 15mm and pin root diameter of 3, 4, 5mm. In addition tensile tests were excuted for the assessment of mechanical properties for joint conditions. From the results, pin diameter, shoulder diameter, and rotating speed of tool influenced on the tensile strength meaningful, but welding speed did not influence on that by the variance analysis. Beside of that, optimum condition of tensile strength was estimated as following ; shoulder diameter:15mm, welding speed:200mm/min, rotating speed:200rpm.

인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시 (Speed-Sensorless Torque Monitoring on CNC Lathe using Internet)

  • 홍익준;권원태
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.99-105
    • /
    • 2004
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel monitors it. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using interne is suggested. To estimate the torque accurately, spindle driving system of an CNC lathe is divide into two parts, induction motor part and mechanical part attached to the induction motor spindle. Magnetizing current is calculated from the measured 3 phase currents without speed sensor used to estimate the torque generated by an induction motor. In mechanical part of the system, some of the torque is used to overcome friction and remaining torque is used to overcome cutting force. An equation to estimate friction torque is drawn as a function of cutting torque and rotation speed. Graphical programming is used to implement the suggested algorithm. to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. Torque of the spindle induction motor is well monitored on the client computers in about 3% error range under various cutting conditions.

Machining Center의 고속 ATC 제어 시스템의 개발 (Development of Control System of High-speed ATC of Machining Center)

  • 한동창;이동일;송용태;이석규
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.125-132
    • /
    • 2002
  • We use a compound-cam twin arm structure and random tool access method to achieve a faster ATC (Automatic Tool Changer) system for the accurate position and rotation control of a tool magazine and an exchange am. Based on the data obtained from various sensors, it is possible to follow the sequence of commands in each control step for an exchange arm. However, it is not so easy to reduce the exchange time of the system because of the slow responses of the sensors and execution mode delays of PLC (Programmable Logic Controller) scan time. In this paper, we propose a new programmed limit-switch position control method to obtain the shortest possible delays for the random tool access method and compound-cam twin arm structure. With some experimental results, we have achieved below 0.9sec tool exchange time with the proposed method.

고강도 알루미늄 합금 A7075-T6의 마찰용접성에 관한 연구

  • 강성보
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.71-75
    • /
    • 1998
  • This study deals with the friction weldability of A7075-T6 having high specific strength. The friction welding conditions used are rotation speed 2000rpm, friction pressure 40MPa, friction time 1.5sec, upset pressure 40~100MPa, upset time 5sec. First, upset length was measured by displacement transducer. The plastic flow in 7075-T6 weld generates convex lens shaped resion by friction and concave lens shaped resion by axial force. Under the condition of upset pressure 85MPa, the friction welds have tensile strength of 552MPa and shear strength of 262MPa.

  • PDF