• Title/Summary/Keyword: Tool properties

Search Result 1,459, Processing Time 0.026 seconds

Characteristics of tool wear in cutting glass fiber reinforced plastics : the effect of physical properties of tool materials (유리섬유 강화 플라스틱(GERP) 절삭시의 공구마멸 특성)

  • 이원평;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • A turning (facing) test on Glass Fiber Reinforced Plastics was performed with several tool materials, e.g., cemented carbides, cermet and ceramic, and the wear patterns and wear rate were analyzed to clarify the relation between physical(mechanical) properties and flank wear of cutting tool. The main results are obtained as follows: (1) When cutting speed is increased, the flank wear in every tool material grows the abnormal wear in the shape of triangle at a certain speed, i.e., a critical speed. (2) When cutting speed is increased, the wear rate in experimental tool material starts to increase remarkably at a critical speed. (3) The thermal conductivity among the properties of the tool material and the thermal crack coefficient of it are almost in proportion to the critical speed. (4) The order of performance in tool materials for cutting GFRP is K 10, M10, P20, TiC, CB.

  • PDF

A Study on Effect of Nitrogen Ion Implantation on Improvement of Surface Properties of Tool Steel (금형공구강의 표면성질 향상에 미치는 질소이온주입의 효과에 관한 연구)

  • Kim, Hwa-Jeong;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.3-9
    • /
    • 2008
  • The ion implantation technology is generally used in order to improve surface mechanical properties, especially tribological properties, of engineering metals. In this study, experimental works were carried out to investigate the surface properties, such as hardness, wear quantity, wear rate and friction force, of a nitrogen ion implanted tool steel STD11 under dry condition. Specimens for the wear test were made to investigate the influences of the initial ion implantation temperature and the total ion radiation. Wear properties, such as the wear quantity and the wear rate, of the nitrogen ion implanted tool steel were considerably improved, especially under the low sliding speed and the low applied load.

  • PDF

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

Estimation of Tool life by Simple & Multiple Linear Regression Analysis of $Si_3N_4$ Ceramic Cutting Tools (회귀분석에 의한 $Si_3N_4$세라믹 절삭공구의 공구수명 추정)

  • 안영진;권원태;김영욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.23-29
    • /
    • 2004
  • In this study, four kinds of $Si_3N_4$-based ceramic cutting tools with different sintering time were fabricated to investigate the relation among mechanical properties, grain size and tool life. They were used to turn gray cast iron at a cutting speed of 330m/min and depth of cut of 0.5mm and 1mm in dry, continuos cutting conditions. Multiple linear regression model was used to determine the relations among the mechanical property, grain size and the density. It was found that the combination of hardness and fracture toughness showed a good relation with tool life. It was also shown that hardness was the most important single element for the tool life.

Effect of Sintering Time and Composition on Cutting Characteristics of $SiC-Si_3N_4$ Ceramic Tool ($SiC-Si_3N_4$ 세라믹공구의 소결시간과 조성변화가 절삭특성에 미치는 영향)

  • 박준석;김경재;이성구;권원태;김영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.321-326
    • /
    • 2001
  • In the present study, $Si_3N_4-SiC$ ceramic composites that contained up to 20 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. The microstructure, the mechanical properties, and the cutting performance of resulting ceramic composites were investigated. By fixing the composition as $Si_3N_4-20$ wt% SiC, the effect of sintering time on the microstructure, the mechanical properties, and the cutting performance were also investigated. For machining of gray cast i개n, the tool life increases with increasing the amount of SiC content in the composites; The tool life also increased with increasing the sintering time. The tool life of the home-made cutting tools was very close to that of commercial $Si_3N_4$ cutting tool. The superior cutting performance of $Si_3N_4-SiC$ ceramic cutting tools suggests the possibility to be a new ceramic tool material.

  • PDF

A Study on the Speciman For High Speed Machining (고속가공을 위한 검사시편에 관한 연구)

  • 정종윤;황영수;이춘만;정원지;고태조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.77-84
    • /
    • 2003
  • The properties of a machine tool greatly affect machining quality since a machine tool has large variance in its features. Machine tool makers want to find best machining condition with the one that they have built. Machine builders need to develop test specimen since it helps finding characteristics of machine tools when the machining properties of the specimen are analyzed. This paper develops test specimen to identify features of the main spindle, the feeding device, and the frame of a machine tool. The specimen is machined with a high speed machine and the features of the machine are analyzed with test items. They are surface roughness, overshoot in axial movement, errors in circular movement, feeding with small movement and compensational error. This work can improve usability for a machine tool in machining practice.

A study on the machinability of Carbon Fiber Reinforced Plastics on tool shape (공구형상에 따른 CFRP(Carbon Fiber Reinforced Plastics) 복합재료의 절삭 특성에 관한 연구)

  • Shin, Bong-Cheul;Kim, Kyu-Bok;Ha, Seok-Jae;Cho, Myeong-W
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.799-804
    • /
    • 2011
  • CFRP(Carbon Fiber Reinforced Plastics) has been used many industries aerospace, automobile, medical device and building material industries, etc. Because it is lighter than other metals and has good properties, such as rigidity, strength and wear. CFRP may be cured integrity. However, it needs postprocessing similar to drilling or endmilling for shape cutting and combination of various material. In this paper, tool dynamometer and accelerometer used to signal analysis for machining properties under various cutting conditions and tool shape changes. In addition, microscope used to verify the machined CFRP surface. As the results, it was found that the cutting force and the vibration were decreased in the increasing of cutting edge (2-flute < 4-flute < composite tool), and the good machined surface can be obtained in this experiments.

Design and Implementation of Video File Structure Analysis Tool for Detecting Manipulated Video Contents

  • Choi, Yun-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.128-135
    • /
    • 2018
  • The various video recording device, like car black box and cctv, are used currently and video contents are used as evidence of traffic accidents and scenes of crime. To verify integrity of video content, there are various study on manipulated video content analysis. Among these studies, a study based on analysis of video file structure and its variables needs a tool which can be used to analyze file structure and extract interested attributes. In this paper, we proposed design and implementation of an analyzing tool which visualizes video file structure and its attributes. The proposed tool use a model which reflects commonality of various video container format, so it is available to analyze video structure with regardless of the video file types. And the tool specifies interested file structure properties in XML and therefore we can change target properties easily without modification of the tool.

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel (알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향)

  • Kim, Nam-Kyu;Kim, Byung-Chul;Jung, Byung-Hoon;Song, Sang-Woo;Nakata, K.;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.