• 제목/요약/키워드: Tool Tip

검색결과 216건 처리시간 0.031초

소형풍력발전기용 블레이드 공력설계 프로그램 개발 (Development of an aerodynamic design program for a small wind turbine blade)

  • 윤진용;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2013
  • An aerodynamic design tool was developed for small wind turbine blades based on the blade element momentum theory. The lift and drag coefficients of blades that are needed for aerodynamic blade design were obtained in real time from the Xfoil program developed at University of Illinois. While running, the developed tool automatically accesses the Xfoil program, runs it with proper aerodynamic and airfoil properties, and finally obtains lift and drag coefficients. The obtained aerodynamic coefficients are then used to find out optimal twist angles and chord lengths of the airfoils. The developed tool was used to design a wind turbine blade using low Reynolds number airfoils, SG6040 and SG6043 to have its maximum power coefficient at a specified tip speed ratio. The performance of the blade was verified by a commercial code well known for its prediction accuracies.

Comprehensive Wear Study on Powder Metallurgical Steels for the Plastics Industry, Especially Injection Moulding Machines

  • Gornik, Christian;Perko, Jochen
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.399-400
    • /
    • 2006
  • M390 microclean(R) of $B{\ddot{o}}hler$ Edelstahl is a powder metallurgical plastic mould steel with a high level of corrosion and wear resistance and therefore often used in the plastics processing industry. But as a consequence of rapidly advancing developments in the plastics processing industry the required level of wear resistance of tool steels in this field is constantly rising. For that reason a new PM tool steel with higher hardness values and an increased amount of primary carbides has been developed to improve the resistance against abrasive and adhesive wear. The wear resistance of both steels against adhesive situations for components of the plastification unit of injection moulding machines has been tested with a novel method. In case of processing polyolefins with an injection moulding machine it was found that there is adhesive wear between the check-ring and the flights of the screw tip of the non-return valve under certain circumstances. The temperature in that region was measured with an infrared temperature sensor. The existence of significant peaks of that signal was used as an indicator for an adhesive wear situation.

  • PDF

소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구 (A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool)

  • 이재하;박성령;양승한;이영문
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

초소형 PCD 공구 제작을 위한 확산접합부의 형상에 따른 인장강도 특성 (Tensile Strength Properties of the Diffusion Bonding Copula Shape for Micro PCD Tool Fabrication)

  • 정바위;김욱수;정우섭;박정우
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.25-30
    • /
    • 2015
  • This study involved the fabrication of precision machine tools using a polycrystalline diamond tip [sintered PCD and cemented carbide (WC-Co) tip] and WC-Co shanks via diffusion bonding with a paste-type nickel alloy filler metal. Diffusion bonding is a process whereby two materials are pressed together at high temperature and high pressure for a sufficient period of time to allow significant atomic diffusion to occur. For smooth progress, a filler metal of nickel alloy was used at the interface. Optical microscopy images were used to observe the copula of the bonded layer. It was confirmed that cracks occurred near the junction in all cases. The tensile strength of the bond was measured using a universal testing machine (UTM) with WC-Co proportional test specimens.

삼차원집적공정에서 원자현미경을 활용한 Wafer Bonding Strength 측정 방법의 신뢰성에 관한 연구 (Reliable Measurement Methodology of Wafer Bonding Strength in 3D Integration Process Using Atomic Force Microscopy)

  • 최은미;표성규
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.11-15
    • /
    • 2013
  • The wafer bonding process becomes a flexible approach to material and device integration. The bonding strength in 3-dimensional process is crucial factor in various interface bonding process such as silicon to silicon, silicon to metals such as oxides to adhesive intermediates. A measurement method of bonding strength was proposed by utilizing AFM applied CNT probe tip which indicated the relative simplicity in preparation of sample and to have merit capable to measure regardless type of films. Also, New Tool was utilized to measure of tip radius. The cleaned $SiO_2$-Si bonding strength of SPFM indicated 0.089 $J/m^2$, and the cleaning result by RCA 1($NH_4OH:H_2O:H_2O_2$) measured 0.044 $J/m^2$, indicated negligible tolerance which verified the possibility capable to measure accurate bonding strength. And it could be confirmed the effective bonding is possible through SPFM cleaning.

CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구 (A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD)

  • 김범석;김정환;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

STS304와 Sl5C 이종마찰압접부의 접합계면 응력해석 (Stress Analysis of Bonding Interface in the Dissimilar Friction Welded Joints)

  • 오정국;차용순;성백섭;박창언;김하식;김충환
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.65-71
    • /
    • 2002
  • Friction welding has may merits such as energy efficiency, simple processing, etc. but it is difficult to obtain good welding at the welded interfaces and heat affected zone. It is discovered that stress singularity exists at the interferes and heat affected zone. The computer program based on boundary element method is utilized in this study. A mathematical model is implemented based on results from several experiments performed at and around the welded interfaces and heat affected zone of disimilar metals under static and dynamic loadings. This stay is to investigate the characteristics of the deformation and fracture behavior around interfaces for friction welded materials under static tensile load. Also, the stress distribution at the tip of crack is analyzed by using BU based on Kelvin's solution of 2-dimensional binding zone. The results of BEM are identical with those in case of considering interfaces of both heat affected zone. Also, stress singularity at the tip of interfaces appears when the elastic modulus ratio is 1.07.

다구찌 실험법에 의한 프레스 커터의 최적설계 (Optimized Design of a Press Cutter by a Taguchi's Experimental Method)

  • 한주현;김청균
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.185-192
    • /
    • 2005
  • The press cutter is productive equipment that practically manufactures mechanical components and polymer-based materials such as fabrics, papers, films, leathers, and rubbers into the desired shapes using a press cutting tool. The plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event between a press cutter and a material on a die. The cutting mechanism is complicated and involves plastic flows of a plate in the vicinity of the tip, friction between the wedge and the plate, deformation of the plate. In this paper, we studied the effect of friction between cutter and plastic sheet far producing precise and superior products. In this paper, the press cutter is analyzed numerically using MARC finite element program for a optimization design of a press cutter. The FEM computed results show that the maximum von Mises stress is concentrated on the tip of a press cutter, which may lead to the edge wear or impact wear of the sharp cutter. Based on the FEM result and Taguchi's experimental design method, the optimized design model 9 for a press cutter is recommended as a best one.

주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작 (Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement)

  • 정승필;김경태;원종보;권오명;박승호;최영기;이준식
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

초단펄스 응용 전해증착에 의한 마이크로 구조물 제작 (Microfabrication by Localized Electrochemical Deposition Using Ultra Short Pulses)

  • 박정우;류시형;주종남
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.186-194
    • /
    • 2004
  • In this research, microfabrication technique using localized electrochemical deposition (LECD) with ultra short pulses is presented. Electric field is localized near the tool tip end region by applying a few hundreds of nano second pulses. Pt-Ir tip is used as a counter electrode and copper is deposited on the copper substrate in 0.5 M CuSO$_4$ and 0.5 M H$_2$SO$_4$ electrolyte. The effectiveness of this technique is verified by comparison with LECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration are investigated. The proper condition is selected from the results of the experiments. Micro columns less than 10 $\mu$m in diameter are fabricated using this technique. The real 3D micro structures such as micro pattern and micro spring can be fabricated by this method. It is suggested that presented method can be used as an easy and inexpensive method for fabrication of microstructure with complex shape.