• Title/Summary/Keyword: Tool System

Search Result 9,307, Processing Time 0.032 seconds

A Study on the Estimation of Green Remodeling Energy Reduction Tool in Building Construction - Office Building - (그린리모델링 에너지저감 효과 예측 Tool 구축에 관한 기초연구 - 업무시설 대상 -)

  • Ju, Jung-Hoon;Lee, Keon-Ho;Koo, Bo-Koung;Kim, Ki-Tae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.8
    • /
    • pp.13-18
    • /
    • 2018
  • The purpose of this study was to study on the estimation of green remodeling energy reduction tool in building construction. Green Remodeling Decision System that can predict the energy reduction effect in green remodeling is developed as a tool for simple remodeling of green remodeling considering users' convenience, so that it can quickly and comprehensively determine power peak load reduction factor technology. A preliminary simulation result of a short preliminary remodeling evaluation is DB. It will be developed as a tool that can be easily accessed by users such as web and apps.

Development of 3 dimensional Automatic Polishing System (3차원 자동 연마장치의 개발)

  • ;;;Isao Shibata
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.314-318
    • /
    • 2002
  • Recently, new polishing tool which was made by magnetic intelligent compound(Magic) was invented. The distribution of abrasives in this new tool can be controlled by magnetic field. Therefore, we can make a special polishing tool which has well arranged abrasives after cooling. In this study, 3 dimensional polishing machine was developed in order to polish complicated - shaped inner surfaces of molds. The performance of developed machine was investigated by measuring the roughness of polished surface using new polishing tool.

  • PDF

Characterization of Brush Grinding System (브러시 연삭 공구의 연삭 특성 분석)

  • 백재용;유송민;신관수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.309-313
    • /
    • 2000
  • In order to meet the industrial requirement, precision grinding with brush tool has been applied. To analyze the brush tool characteristics, several parameters including numbers of brush string installed in a single holder, depth of cut and brush length have been changed. Several data from various source were acquired using AE, acceleration and tool dynamometer during the process. Consistent results revealing certain trend with respect to each process condition were observed.

  • PDF

Wear Characteristics of CBN Tools on Hard Turning of AISI 4140 (고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성)

  • Yang, Gi-Dong;Park, Kyung-Hee;Lee, Myung-Gyu;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

A Study on the Prediction of Tool Deflection and Precision Machining in Ball End Milling Process (볼 엔드밀 가공에서의 공구 처짐 예측과 정밀 가공에 관한 연구)

  • 조현덕;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1669-1680
    • /
    • 1992
  • This paper deals with the prediction of cutting force and tool deflection and it's application in the flexible ball end milling process. Machining accuracy is determined by the static stiffness of tool system and the instantaneous cutting force. The static stiffness of tool system consists of the stiffness of holer and the stiffness of ball end mill. The stiffness of holder was obtained from the experimental result, and the stiffness of ball end mill with two flutes was theoretically analyzed by the finite elements method. In cutting process, the instantaneous cutting force is dependent upon the instantaneous feed and pick feed(radial depth of cut) which are varied by tool deflection. For the calculation of cutting force and deflection of ball end mill, iteration method is used with the linear interpolation to the data of cutting force obtained from rigid ball end mill and the data of tool deflection. In this paper, a for enhancing accuracy is discussed. And the selection of helix angle for minimizing machining error is also discussed.

Optimization of Motion Control System on the Machine Tool (공작기계의 이송계 제어 시스템의 최적화)

  • 박인준;곽경남;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF

파워트레인 제어 시뮬레이션을 위한 MATLAB/SIMULINK 상에서의 객체지향 프로그래밍

  • 양경진;최재원;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.208.1-212
    • /
    • 1997
  • In this paper, a computer simulation tool for evaluting integrated engine/transmission control system using MATLAB/SIMULINK is investigated. Since a modular programming technique based upon the object-oriented programming is used in the paper, the simulation tool developed reduces the burden of model complexity by dividing engine/transmission systems into hierarchical subsystem. Furthermore, it also provides user -friendly, reusable, and upgradable characteristics of the system. The simulation tool could be useful to the automotive engineers who frequently change models and develop new systems in the automotive powertrain and control area.

Prediction of Chip Formation Mechanism Using Acoustic Emission (음향방출을 이용한 칩 발생 기구의 예측)

  • 맹민재
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 2001
  • The machining process on be considered as a planned interaction of the workpiece, the tool and the machine tool. In an unmanned situation, the results of this interaction are to be continuously monitored so that any changes in the machining environment on be sensed to corrective actions. In order to design the process monitoring system for unmanned manufacturing, the identification of chip formation is proposed. The system proposes the method of using acoustic emission(AE) signal analysis to identify the chip formation during cutting.

  • PDF

Case studies for productivity enhancement on cold forging (냉간단조 생산성 향상 사례)

  • Choi, S.T.;Lee, I.H.;Kwon, Y.C.;Lee, J.H.;Lee, C.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.42-47
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. The shape and process changes of die, the hardness changes of material and the tolerance of dies to decrease the die stress are analyzed by the FEM software. The heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product..

  • PDF

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.