• 제목/요약/키워드: Tool Optimization Finite Element Analysis

검색결과 91건 처리시간 0.021초

강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계 (Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology)

  • 김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

유한요소해석을 이용한 5축 복합가공기 헤드 구조물의 최적 설계에 관한 연구 (A study on the design optimization of the head stucture of 5-axis machining center using finite element analysis)

  • 김재선;이명호;윤재웅
    • 한국융합학회논문지
    • /
    • 제12권9호
    • /
    • pp.161-168
    • /
    • 2021
  • 복합가공기 분야에서 고속 및 고정밀화에 대한 요구가 늘어남에 따라 복합가공기의 강성과 진동에 관한 관심이 증가하고 있다. 그러나 경험에 의존한 설계로 인해 개발 시간이 많이 소요되며 적절한 설계에도 어려움이 많아 공작기계 설계에 구조 최적화 FEM의 활용이 많아지고 있다. 그러나, 현재 구조물의 응력 분포를 통한 최적화를 주로 활용하고 있어 구조물의 진동 상태를 고려하여 최적화하기에는 어려움이 있다. 본 논문에서는 5축 복합가공기에서 가공에 가장 많은 영향을 끼치는 헤드 구조물의 최적화를 위하여 유한요소해석을 활용한 정적 구조해석, 모드 해석, 가진 주파수 해석을 진행하였으며, 도출된 응력 분포, 변형, 고유진동수, 가진 주파수 그래프를 활용하고 적절한 목적함수와 설계변수를 설정하여 정강성과 동강성을 모두 고려한 위상 최적화 해석 방법을 제시하고자 한다.

유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계 (Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms)

  • 윤인세;최흥섭;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF

다구찌법을 활용한 헤딩공정설계 최적화 연구 (A study on the cold heading process design optimization by taguchi method)

  • 황준;원진환
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.216-225
    • /
    • 2023
  • 본 연구에서는 냉간 헤딩 공정에서 성형하중과 펀치 금형의 마모 감소를 통한 펀치 수명 증대를 위해 헤딩용 펀치 형상 최적설계를 수행하였다. 기존 생산에 사용되는 냉간 헤딩 펀치와 성형공정에 대한 유한요소해석 시뮬레이션을 통해 성형하중과 유동 특성 분석, 펀치금형에 집중되는 유효응력 및 마모량에 대하여 분석하였으며, 이를 통해 금형 마모와 밀접한 주요 설계인자를 확인하였다. 펀치금형의 최적설계 변수로서는 펀치 금형 포인트각(Point angle), 에지 반경값(Corner radius), 펀치소재재종(die material type), 마찰계수(friction coefficient) 등의 4가지 변수를 대상으로 4인자 3수준 인자 및 변수 수준을 설정하고, 성형해석 시뮬레이션과 다구찌법을 활용하여 설계인자별 영향도를 분석하여 최적의 최적설계 인자를 결정하였다. 본 연구를 통해 얻어진 최적설계변수를 적용하여 냉간 헤딩용 펀치 최적설계 시뮬레이션 결과, 각 펀치에 발생하는 최대유효응력은 최대 8.9 % 감소 효과를, 최대 펀치 마모 깊이는 37 % 감소 효과를, 성형하중은 평균 20% 수준 의 감소효과를 얻을 수 있었다. 현재, 소성 성형제품군이 적용되는 자동차, 건설 플랜트사에서 요구되는 고품질에 대응하면서도 적정 제조원가 절감을 위한 성형성 개선을 위한 성형공정개발 및 금형설계의 최적화가 지속적으로 필요하며, 향후 연구 결과를 현업에 적용하여 제품 성형성 개선 및 금형수명 증대 관리를 위한 기술자료로 활용하고자 한다.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

배관용 관 이음쇠 내외경 동시 교정툴의 신뢰성 평가 (Study of Structural Reliability of Pipe-Fitting Collet Tool)

  • 김창욱;박진철;송정일
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.140-145
    • /
    • 2015
  • In the present study, the structural safety of the bolt portion and collet tool structure of the pipe-fitting tool is analyzed by using the finite element technique. Two forces as piston forces with the magnitude of 187.5 Tons are applied to the inner and outer portions of the collet tool, respectively. A structural load of 750 Tons is applied to the bolt portion. In the analysis results, it is found that the structure becomes safe under the current loading conditions. The reliability rating of the pipe is calculated in this study. The material properties of the actual material are evaluated by using mechanical testing. Therefore, the material properties are used to carry out static structural and optimization analysis.

Data Interpolation and Design Optimisation of Brushless DC Motor Using Generalized Regression Neural Network

  • Umadevi, N.;Balaji, M.;Kamaraj, V.;Padmanaban, L. Ananda
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.188-194
    • /
    • 2015
  • This paper proposes a generalized regression neural network (GRNN) based algorithm for data interpolation and design optimization of brushless dc (BLDC) motor. The procedure makes use of magnet length, stator slot opening and air gap length as design variables. Cogging torque and average torque are treated as performance indices. The optimal design necessitates mitigating the cogging torque and maximizing the average torque by varying design variables. The data set for interpolation and ensuing design optimisation using GRNN is obtained by modeling a standard BLDC motor using finite element analysis (FEA) tool MagNet 7.1.1. The performance indices of the standard motor obtained using FEA are validated with an experimental model and an analytical method. The optimal design is authenticated using particle swarm optimization (PSO) algorithm and the performance indices of the optimal design obtained using GRNN is validated using FEA. The results indicate the suitability of GRNN as an interpolation and design optimization tool for a BLDC motor.

보강링을 갖는 냉간 압출 금형 세트의 탄성해석 (Elastic Analysis of Cold Extrusion Die Set with Stress Ring)

  • 안성찬;이근안;김수영;임용택
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.355-362
    • /
    • 2002
  • In this study, an axi-symmetric finite element program for elastic analysis of the die set shrink fitted in cold extrusion was developed. The geometrical constraint according to shrink fit was enforced by employing the Lagrange multiplier method. The numerical results for strain and stress distributions in the die set including single and multi stress rings assembled by shrink fit were compared well with the Lame's equation for thick-walled solution available in the literature. To extend the applicability of the analysis program developed, various cases without or with stress ring and with pre-stress applied on stress ring were numerically investigated as well. This numerical approach enables the optimization study to determine optimal dimensions of die set to improve tool life for practical use in industry.

솔레노이드 액추에이터의 비선형 동적응답에 대한 구조최적설계 (Structural Optimization for Nonlinear Dynamic Response of Solenoid Actuator)

  • 백석흠;김현수;장득열;이승범;권영석;노의동;이창훈
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes a design optimization approach for core of solenoid actuators by combining optimization techniques with the finite element method (FEM). A solenoid is an important element part which hydraulically controls a transmission system, etc. The demanded feature of the solenoid is that it performs an electromagnetic force output being constant regardless of the stroke and being proportional to coil current. The plunger compresses a spring with a minimum force of 12 N over an 1.7 mm travel. The orthogonal array, analysis of variance (ANOVA) techniques and response surface optimization, are employed to determine the main effects and their optimal design variables. The methodology is demonstrated as a optimization tool for the core design of a solenoid actuator.

금형압축성형공정 해석용 CAE 프로그램 개발 및 적용 (Development of a CAE Tool for P/M Compaction Process and Its Application)

  • 정석환;권영삼
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.399-411
    • /
    • 2004
  • Crack generation during die compaction and distortion during sintering have been critical problems for the conventional pressing and sintering process. Until now, trial and error approach with engineers' industrial experiences has been only solution to protect the crack generation and distortion. However, with complexity in shape and process it is very difficult to design process conditions without CAE analysis. We developed the exclusive CAE software (PMsolver/Compaction) for die compaction process. The accuracy of PMsolver is verified by comparing the finite element simulation results with experimental results. The simplified procedures to find material properties are proposed and verified with iron based powder and tungsten carbide powder. Based on the accurate simulation result by PMsolver, the optimal process conditions are designed to get uniform density distribution in a powder compact after die compaction process by using a derivative based optimization scheme. In addition, the effect of non-uniform density distribution in a powder compact on distortion during sintering is shown in case of the fabrication of tungsten carbide insert.