• Title/Summary/Keyword: Tool Design and Modification

Search Result 89, Processing Time 0.03 seconds

Optimum Tool Design in a Multi-stage Rectangular Cup Drawing and Ironing Process with the Large Aspect Ratio by the Finite Element Analysis (유한요소해석을 이용한 세장비가 큰 직사각컵 다단계 디프 드로잉-아이어닝 공정의 최적 금형설계)

  • Kim, Se-Ho;Kim, Seung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1077-1084
    • /
    • 2002
  • Optimum tool design is carried out fur a multi-stage rectangular cup deep-drawing and ironing process with the large aspect ratio. Finite element simulation is carried out to investigate deformation mechanisms with the initial design made by an expert. The analysis considers the deep drawing process with ironing for the thickness control in the cup wall. The analysis reveals that the difference of the drawing ratio within the cross section and the irregular contact condition produce non-uniform metal flow to cause wrinkling and severe extension. For remedy, the modification guideline is proposed in the design of the tool and the process. Analysis results confirm that the modified tool design not only improves the quality of a deep-drawn product but also reduces the possibility of failure. The numerical result shows fair coincidence with the experimental one. After tryouts of the tool shape, the rectangular cup has been produced in the transfer press.

Design and Implementation of Video File Structure Analysis Tool for Detecting Manipulated Video Contents

  • Choi, Yun-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.128-135
    • /
    • 2018
  • The various video recording device, like car black box and cctv, are used currently and video contents are used as evidence of traffic accidents and scenes of crime. To verify integrity of video content, there are various study on manipulated video content analysis. Among these studies, a study based on analysis of video file structure and its variables needs a tool which can be used to analyze file structure and extract interested attributes. In this paper, we proposed design and implementation of an analyzing tool which visualizes video file structure and its attributes. The proposed tool use a model which reflects commonality of various video container format, so it is available to analyze video structure with regardless of the video file types. And the tool specifies interested file structure properties in XML and therefore we can change target properties easily without modification of the tool.

A study on material selection for semiconductor die parts and on their modification and manufacture (반도체금형에서 부속부품의 재료선정 및 개선과 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.27-30
    • /
    • 2014
  • Alloy tool steel such as SKD11 and SKD61 or high speed tool like SKH51 are used as materials for semiconductor dies. Cavities, curl blocks, pot blocks and housings are made from those materials. To make those parts from alloy tool steel or high speed tool, one utilizes discharge machining, and mechanical machining including machining center, milling, drilling, forming grinding and others. In the process of cutting machining and polishing, the die materials become unsuitable for machining owing to bubbles and foreign substances in them, which hinders production process. Therefore, this study focuses on die material selection criteria, and on analysis and comparison of material characteristics to help companies to solve their problems, make die manufacture less burdensome and extend die life.

  • PDF

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

Study on the Springback Reduction of Automotive Advanced High Strength Steel Panel (자동차 초고강도 강판 패널의 스프링백 저감에 관한 연구)

  • Kim, B.G.;Lee, I.S.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.488-493
    • /
    • 2009
  • The very big springback of advanced high strength steel(AHSS) sheets invokes undesired shape defects, which can be generally eliminated by die correction or process parameter control. The springback reduction by controlling the forming process parameters is easy for the application, but limited for the bulky achievement. In this study, the effective die correction method, which obtains the modification of tool shape from the relationship between die design variable and springback, is introduced and is applied to the TWB tool of automotive side rail to show the validity and usefulness. Among the die correction trials repeatedly performed, the first trial is carried out by correcting the tool shape to the opposite direction to the springbacks of several tool sections. Next trials are done by extrapolating the springbacks of among the original tool uncorrected and the tools corrected negative amounts of the springback and by finding tool shapes without springbacks. After the angle of side wall and radius of curvature of horizontal bottom floor are chosen as design variables in the tool design of side rail, the tool shape is corrected 3 times. The accuracy of final shape within the assembly limit of 1mm and the springback reduction of 75.8% compared to the uncorrected tool are achieved.

Automatic Tool Development for Initial Hull Form Design (초기 선형 설계를 위한 자동화 툴 개발)

  • Lee, Ju-Hyun;Rhee, Shin-Hyung;Jun, Dong-Su;Chi, Hye-Ryoun;Kim, Yong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.763-769
    • /
    • 2010
  • Thanks to the rapid advancement of computational power and development of numerical methods, Computational fluid dynamics techniques are being used widely for the prediction of ship resistance performance. In the present study, an automatic tool was developed to facilitate hull form modification, consequent mesh generation, and flow analysis for parametric study. It is a tedious job to go back and forth between geometry modification and mesh generation for every hull form variation. With the developed tool, users can make multiple hull form variation and their hull form performance prediction easily in a few simple steps. The verification of the developed tool was done by applying it to resistance performance parametric study of a generic POD propulsion cruise ship with different lengths of bow and stern. It is believed that the tool can be extended to more sophisticated hull form variation and help optimize the ship performance more efficiently.

Study on the Tooth Modification for High Speed Gear by Finite Element Method (FEM을 이용한 고속기어 치형 수정에 관한 연구)

  • 반재삼;이경원;김규하;조규종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.72-77
    • /
    • 2003
  • The stable driving condition of high speed gear is approached by shape modifications of a gear tooth. Recently, many gear designers are using FEM for the design and the manufacture of a high precision gear. In this paper, it is aimed to drive in stable sound level through the modification of the tooth and the shape of a gear. The simulation is used to understand the effect of holes for the decrement of weight and the stress variation for the tooth modification. Beam elements used to simulate the same condition as a real gear drive by FEM. The driven gear is simulated to 60,000rpm for the tooth modification.

Optimal Tool Length Computation of NC Data for 5-axis Ball-ended Milling (5축 볼엔드밀 가공 NC 데이터의 최적 공구 길이 계산)

  • Cho, Hyeon-Uk;Park, Jung-Whan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.354-361
    • /
    • 2010
  • The paper presents an efficient computation of optimal tool length for 5-axis mold & die machining. The implemented procedure processes an NC file as an initial input, where the NC data is generated by another commercial CAM system. A commercial CAM system generates 5-axis machining NC data which, in its own way, is optimal based on pre-defined machining condition such as tool-path pattern, tool-axis control via inclination angles, etc. The proper tool-length should also be provided. The tool-length should be as small as possible in order to enhance machinability as well as surface finish. A feasible tool-length at each NC block can be obtained by checking interference between workpiece and tool components, usually when the tool-axis is not modified at this stage for most CAM systems. Then the minimum feasible tool-length for an NC file consisting of N blocks is the maximum of N tool-length values. However, it can be noted that slight modification of tool-axis at each block may reduce the minimum feasible tool-length in mold & die machining. This approach can effectively be applied in machining feature regions such as steep wall or deep cavity. It has been implemented and is used at a molding die manufacturing company in Korea.

Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications (위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경)

  • 이준호;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

Body Modification in Fashion Illustrations Based on the Theory of 'Corps sans Organes' of Deleuze (들뢰즈의 기관 없는 신체론에 기반한 현대 패션일러스트레이션의 신체특성)

  • Lee, Jee-Hyun
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.9
    • /
    • pp.27-38
    • /
    • 2011
  • This study focused on the body modification in fashion illustration based on 'Corps sans Organes' of Deleuze. An argument about the changes of ideal body to define the aesthetic consciousness of times has lasted for a long time. Therefore, analyzing body modification in fashion illustration to express the ideal beauty could be effective motives to understand the changes of ideal bodies related with socio-cultural meanings, and be helpful to understand the overall trends of modern fashion illustration. To classify the types of body modification, the concept of 'Corps sans Organes' of Deleuze was used as an analyzing tool. As the final result, the characteristics of body modification could be divided into three groups; the fragmentation of bodies, the pastiche of bodies, and the abstraction of bodies. First, in the fragmentation of bodies, which is related with flexibility, pluralism, and subjective views on body, the bodies were separated as molecules. Second, the elements of pastiche of bodies could be subdivided into five sub-groups; sex, plants, animals, texts and figure, and machines. The pastiche of bodies was used to extend the limitation of human capabilities and to reinterpret the human identities. Last, the abstraction of bodies based on contingency, indeterminacy, and subjective associations could be related with the nomadic and indefinite body images. The body modification could be considered as the context of nomadism, indeterminacy, and virtuality of modern-times, and it would be the basic data to understand the body modification in fashion illustrations.