• Title/Summary/Keyword: Tomography, emission-computed, single-photon

Search Result 155, Processing Time 0.024 seconds

A new efficient route for synthesis of R,R- and S,S-hexamethylpropyleneamine oxime for labeling with technetium-99m

  • Vinay Kumar Banka;Young Ju Kim;Yun-Sang Lee;Jae Min Jeong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.75-91
    • /
    • 2020
  • [99mTc]Tc-Hexamethylpropylene amine oxime (HMPAO) is currently used as a regional cerebral blood flow imaging agent for single photon emission computed tomography (SPECT). The HMPAO ligand exists in two isomeric forms: d,l and meso showing different properties in vivo. Later studies indicated that brain uptake patterns of 99mTc-complexes formed from separated enantiomers differed. Separation of enantiomers is difficult by fractional crystallizations method. Usually, the substance is obtained in low chemical yield in a time-consuming procedure. Furthermore, the final product still contains some impurity. So we have developed new efficient route for synthesis of R,R- and S,S-HMPAO enantiomeric compounds in 6-steps. Nucleophilic substitution (SN2) reactions of 2,2-dimethylpropane-1,3-diamine either with S- (1a) or R-methyl2-chloropropanoate (1b) were performed to produce compounds R,R- (2a) or S,S-isomer (2b) derivatives protected with benzylchloroformate (Cbz), respectively. And then Weinreb amide and methylation reaction using Grignard reagent, oxime formation with ketone group and deprotectiion of Cbz group by hydrogenolysis gave S,S- (7a) or R,R-HMPAO (7b), respectively. Entaniomeric compounds were synthesied with high yield and purity without any undesired product. The 7a or 7b kits containing 10 ㎍ SnCl2-2H2O were labeled with 99mTc with high radiolabeling yield (90%).

Nationwide Trends of Gatekeeper to Invasive Coronary Angiography in Suspected Coronary Artery Disease

  • Min Jae Cha;William D Kim;Hoyoun Won;Jaeeun Joo;Hasung Kim;In-Cheol Kim;Jin Young Kim;Seonhwa Lee;Iksung Cho
    • Korean Circulation Journal
    • /
    • v.52 no.11
    • /
    • pp.814-825
    • /
    • 2022
  • Background and Objectives: Real-world trends in the utility and type of gatekeeping studies in invasive coronary angiography (ICA) requires further investigation. Methods: We identified outpatients who underwent noninvasive cardiac tests or directly ICA for suspected coronary artery disease (CAD) from the nationwide Korea Health Insurance Review and Assessment Service-National Patient Sample database between 2012 and 2018. Results: Among 71,401 patients, the percentage of patients who were evaluated for suspected CAD was 34.7% for treadmill test (TMT), 4.2% for single-photon emission computed tomography (SPECT), 24.2% for coronary computed tomography angiography (CCTA), 1.6% for multiple gatekeepers, and 32.3% for directly ICA without noninvasive studies. The proportion of CCTA as a gatekeeper showed linear increase, (18.6% in 2012 and 28.8% in 2018; p<0.001), while those of TMT, SPECT, and direct ICA have decreased (p<0.001, p=0.03, and p<0.001, respectively). The overall incidence of downstream ICA after gatekeeper was 13.8% (6,662/48,346), and SPECT showed higher ICA rate in pairwise comparison with TMT and CCTA (p<0.001). Patients who performed gatekeepers before ICA showed higher rate of subsequent PCI (34.7% vs. 32.3%; p<0.001) and CABG (3.5% vs. 1.0%; p<0.001), compared to those who directly underwent ICA, and CCTA was associated with higher revascularization rate after ICA in pairwise comparison with TMT and SPECT (p<0.001). Conclusions: Nationwide database demonstrated that CCTA is utilized increasingly as a gatekeeper for ICA and is associated with high revascularization rate after ICA in outpatients with suspected CAD.

Measurement of Liver Volume by Emission Computed Tomography (SPECT를 이용한 간용적의 측정)

  • Yoo, H.S.;Lee, J.T.;Park, C.Y.;Woo, K.B.;Paik, N.C.;Shin, D.H.;Joo, K.W.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-62
    • /
    • 1983
  • In 16 volunteers without clinical or laboratory evidence of liver disease, liver volume was determined using single-photon emission computed tomography(ECT). This technique provided excellent object contrast between the liver and its surroundings and permitted calculation of liver volume without geometric assumptions about the liver's configuration. Reproducibility of results was satisfactory, with a root-me an-square error of less than 2% between duplicate measurements in 16 individuals. The volume measurements were validated by the use of phantoms.

  • PDF

Dopamine Transporter Imaging in Neurodegenerative Disorders (신경계 퇴행성 질환에서의 도파민 운반체 영상)

  • Kim, Jae-Woo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • The dopamine transporter (DAT) is responsible for the re-uptake of dopamine from the synaptic cleft and is located on dopaminergic nerve terminals only. DAT single photon emission computed tomography (SPECT) and positron omission tomography (PET) imaging, therefore, offer the unique opportunity to study via striatal uptake the integrity of presynaptic dopaminergic nerve terminals in vivo. In recent years SPECT and PET using specific ligands binding to DAT have evolved as an useful tool for diagnosing and monitoring progression of neurodegenerative disorders affecting dopaminergic systems. This article briefly reviews the literature dealing with DAT SPECT and PET imaging in parkinsonism and other neurodegenerative disorders.

A Study on Virtual Reality Management of 3D Image Information using High-Speed Information Network (초고속 정보통신망을 통한 3차원 영상 정보의 가상현실 관리에 관한 연구)

  • Kim, Jin-Ho;Kim, Jee-In;Chang, Chun-Hyon;Song, Sang-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3275-3284
    • /
    • 1998
  • In this paper, we deseribe a Medical Image Information System. Our system stores and manages 5 dimensional medical image data and provides the 3 dimensional medical data via the Internet. The Internet standard VR format. VRML(Virtual Reality Modeling Language) is used to represent the 3I) medical image data. The 3D images are reconstructed from medical image data which are enerated by medical imaging systems such ans CT(Computerized Tomography). MRI(Magnetic Resonance Imaging). PET(Positron Emission Tomograph), SPECT(Single Photon Emission Compated Tomography). We implemented the medical image information system shich rses a surface-based rendering method for the econstruction of 3D images from 2D medical image data. In order to reduce the size of image files to be transfered via the Internet. The system can reduce more than 50% for the triangles which represent the surfaces of the generated 3D medical images. When we compress the 3D image file, the size of the file can be redued more than 80%. The users can promptly retrieve 3D medical image data through the Internet and view the 3D medical images without a graphical acceleration card, because the images are represented in VRML. The image data are generated by various types of medical imaging systems such as CT, MRI, PET, and SPECT. Our system can display those different types of medical images in the 2D and the 3D formats. The patient information and the diagnostic information are also provided by the system. The system can be used to implement the "Tele medicaine" systems.

  • PDF

Associations between Brain Perfusion and Sleep Disturbance in Patients with Alzheimer's Disease

  • Im, Jooyeon J.;Jeong, Hyeonseok S.;Park, Jong-Sik;Na, Seung-Hee;Chung, Yong-An;Yang, YoungSoon;Song, In-Uk
    • Dementia and Neurocognitive Disorders
    • /
    • v.16 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • Background and Purpose Although sleep disturbances are common and considered a major burden for patients with Alzheimer's disease (AD), the fundamental mechanisms underlying the development and maintenance of sleep disturbance in AD patients have yet to be elucidated. The aim of this study was to examine the correlation between regional cerebral blood flow (rCBF) and sleep disturbance in AD patients using technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT). Methods A total of 140 AD patients were included in this cross-sectional study. Seventy patients were assigned to the AD with sleep loss (SL) group and the rest were assigned to the AD without SL group. SL was measured using the sleep subscale of the Neuropsychiatric Inventory. A whole-brain voxel-wise analysis of brain SPECT data was conducted to compare the rCBF between the two groups. Results The two groups did not differ in demographic characteristics, severity of dementia, general cognitive function, and neuropsychiatric symptoms, with the exception of sleep disturbances. The SPECT imaging analysis displayed decreased perfusion in the bilateral inferior frontal gyrus, bilateral temporal pole, and right precentral gyrus in the AD patients with SL group compared with the AD patients without SL group. It also revealed increased perfusion in the right precuneus, right occipital pole, and left middle occipital gyrus in the AD with SL group compared with the AD without SL group. Conclusions The AD patients who experienced sleep disturbance had notably decreased perfusion in the frontal and temporal lobes and increased rCBF in the parietal and occipital regions. The findings of this study suggest that functional alterations in these brain areas may be the underlying neural correlates of sleep disturbance in AD patients.

Development of Chemical Separation Process for Thallium-201 Radioisotope with Lead Standard Material (납 표준물질을 이용한 방사성동위원소 Thallium-201의 화학적 분리공정 개발)

  • JunYoung Lee;TaeHyun Kim;JeongHoon Park
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.543-549
    • /
    • 2023
  • Thallium-201 (201Tl) is a medical radioisotope which emits gamma rays when it decays and used in myocardial perfusion scans in single-photon emission tomography due to its similar properties to potassium. Currently, the Korea Institute of Radiological & Medical Sciences is the only institution producing 201Tl in Korea, and optimization of 201Tl production research is necessary to meet supply compared to domestic demand. To this end, technical analysis of plating target production and chemical separation methods essential for 201Tl production research is conducted. It deals with the process of generating and separating 201Tl radioisotope and target production, It can be generated through a nuclear reaction such as natHg(p,xn)201Tl, 201Hg(p,n)201Tl, natPb(p,xn)201Bi → 201Pb → 201Tl, 205Tl(p,5n)201Pb → 201Tl, and considering impure nuclide generated simultaneously with the use of proton beam energy of 35 MeV or less, it is intended to be produced using the 203Tl(p,3n)201Pb→201Tl nuclear reaction. In particular, the chemical separation of Tl is a very important element, and the chemical separation methods that can separate it is broadly divided into four types, including solid phase extraction, liquid-liquid, electrochemical, and ion exchange membrane separation. Some chemical separations require additional separation steps, such as methods using selective adsorption. Therefore, this technical report describes four chemical separation methods and seeks to separate high-purity 201Tl using a method without additional separation steps

Management and rehabilitation of moderate-to-severe diabetic foot infection: a narrative review

  • Chi Young An;Seung Lim Baek;Dong-Il Chun
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.4
    • /
    • pp.343-351
    • /
    • 2023
  • Diabetic foot is one of the most devastating consequences of diabetes, resulting in amputation and possibly death. Therefore, early detection and vigorous treatment of infections in patients with diabetic foot are critical. This review seeks to provide guidelines for the therapy and rehabilitation of patients with moderate-to-severe diabetic foot. If a diabetic foot infection is suspected, bacterial cultures should be initially obtained. Numerous imaging studies can be used to identify diabetic foot, and recent research has shown that white blood cell single-photon emission computed tomography/computed tomography has comparable diagnostic specificity and sensitivity to magnetic resonance imaging. Surgery is performed when a diabetic foot ulcer is deep and is accompanied by bone and soft tissue infections. Patients should be taught preoperative rehabilitation before undergoing stressful surgery. During surgical procedures, it is critical to remove all necrotic tissue and drain the inflammatory area. It is critical to treat wounds with suitable dressings after surgery. Wet dressings promote the formation of granulation tissues and new blood vessels. Walking should begin as soon as the patient's general condition allows it, regardless of the wound status or prior walking capacity. Adequate treatment of comorbidities, including hypertension and dyslipidemia, and smoking cessation are necessary. Additionally, broad-spectrum antibiotics are required to treat diabetic foot infections.

A Study on the MEG Imaging (MEG 영상진단 검사에 관한 연구)

  • Kim, Jong-Gyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.123-128
    • /
    • 2005
  • Magnetoencephalography (MEG) is the measurement of the magnetic fields produced by electrical activity in the brain, usually conducted externally, using extremely sensitive devices such as Superconducting Quantum Interference Device (SQUID). MEG needs complex and expensive measurement settings. Because the magnetic signals emitted by the brain are on the order of a few femtoteslas (1 fT = 10-15T), shielding from external magnetic signals, including the Earth's magnetic field, is necessary. An appropriate magnetically shielded room is very expensive, and constitutes the bulk of the expense of an MEG system. MEG is a relatively new technique that promises good spatial resolution and extremely high temporal resolution, thus complementing other brain activity measurement techniques such as electroencephalography (EEG), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and functional magnetic resonance imaging (fMRI). MEG combines functional information from magnetic field recordings with structural information from MRI. The clinical uses of MEG are in detecting and localizing epileptic form spiking activity in patients with epilepsy, and in localizing eloquent cortex for surgical planning in patients with brain tumors. Magnetoencephalography may be used alone or together with electroencephalography, for the measurement of spontaneous or evoked activity, and for research or clinical purposes.

  • PDF

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.